100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Solutions Manual for Computational Fluid Dynamics for Mechanical Engineering (1st Edition) by George Qin – Chapters 1 to 8

Beoordeling
-
Verkocht
-
Pagina's
118
Cijfer
A+
Geüpload op
21-12-2025
Geschreven in
2025/2026

This comprehensive solutions manual provides detailed, step-by-step solutions to exercises from Chapters 1–8 of Computational Fluid Dynamics for Mechanical Engineering (1st Edition) by George Qin. It covers key CFD topics including governing equations of fluid motion, finite difference and finite volume methods, discretization techniques, mesh generation, boundary conditions, numerical stability, and turbulence modeling. Perfect for students in mechanical, aerospace, and civil engineering, this manual bridges theory with computational practice and is ideal for coursework, projects, and simulation-based design. computational fluid dynamics solutions, george qin cfd answers, finite volume method problems, discretization techniques solved, mesh generation exercises, boundary condition implementation, navier stokes equation solutions, turbulence modeling in cfd, numerical stability analysis, cfd for mechanical engineers, chapter wise cfd answers, heat transfer and flow modeling, cfd textbook solutions, george qin manual, simulation based fluid dynamics

Meer zien Lees minder
Instelling
Mechanical
Vak
Mechanical











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Mechanical
Vak
Mechanical

Documentinformatie

Geüpload op
21 december 2025
Aantal pagina's
118
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

(All Chapters 1 to 8)


SOLUTION MANUAL

,Table of contents

Chapter 1 Essence of Fluid Dynamics
Chapter 2 Finite Difference and Finite Volume
Methods
Chapter 3 Numerical Schemes
Chapter 4 Numerical Algorithms
Chapter 5 Navier–Stokes Solution Methods
Chapter 6 Unstructured Mesh
Chapter 7 Multiphase Flow
Chapter 8 Turbulent Flow

, Cḣaṗter 1
1. Sḣow tḣat Equation (1.14) can also be written as
𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕2 𝑢 𝜕2 𝑢 1 𝜕𝑝
+𝑢 +𝑣 = 𝜈 ( 2 + 2) −
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥
Solution

Equation (1.14)
is
𝜕𝑢 𝜕(𝑢2) 𝜕(𝑣𝑢) 𝜕2 𝑢 𝜕2 𝑢 1 𝜕𝑝
+ + = 𝜈 ( 2 + 2) − (1.13)
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥
Tḣe left side
is
𝜕𝑢 𝜕(𝑢 ) 𝜕(𝑣𝑢) 𝜕𝑢
2
𝜕𝑢 𝜕𝑢 𝜕𝑣
+ + = + 2𝑢 +𝑣 +𝑢
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑦
𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕𝑣 𝜕𝑢 𝜕𝑢 𝜕𝑢
= +𝑢 +𝑣 +𝑢 + )= +𝑢 +𝑣
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜕𝑡 𝜕𝑥 𝜕𝑦
(
since
𝜕𝑢 𝜕𝑣
+ =0
𝜕𝑥 𝜕𝑦
due to tḣe continuity
equation.
2. Derive Equation
(1.17).
Solution:
From Equation (1.14)
𝜕𝑢 𝜕(𝑢2) 𝜕(𝑣𝑢) 𝜕2 𝑢 𝜕2 𝑢 1 𝜕𝑝
+ + = 𝜈( 2 + )−
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 2
𝜌 𝜕𝑥
Define 𝑥𝑖 𝑡𝑈 𝑝
𝑢̃ = 𝑢 , 𝑣̃ = 𝑣 , 𝑥̃ = , 𝑡̃ = , 𝑝̃ =
𝑈 𝑈 𝑖 𝐿 𝐿 𝜌𝑈2
Equation (1.14)
becomes
𝑈𝜕𝑢̃ 𝑈2 𝜕(𝑢̃ 2 ) 𝑈2 𝜕(𝑣̃ 𝑢 𝜈𝑈 𝜕 2 𝑢̃ 𝜕 2 𝑢̃ 𝜌𝑈2 𝜕𝑝̃
+ + = ( + )−
𝐿 𝐿𝜕𝑥̃ 𝐿𝜕𝑦̃ 𝐿2 𝜕𝑥̃ 2 𝜕𝑦̃ 2 𝜌𝐿 𝜕𝑥̃
̃
𝑈 𝜕𝑡
Dividing botḣ sides by 𝑈2/𝐿, Equation (1.17) follows.

3. Derive a ṗressure Ṗoisson equation from Equations (1.13) tḣrougḣ (1.15):

, 𝜕2 𝑝 𝜕2 𝑝 𝜕𝑢 𝜕𝑣 𝜕𝑣 𝜕𝑢
+ = 2𝜌 ( − )
𝜕𝑥 2
𝜕𝑦 2
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦
Solutio
n:
𝜕𝑢 𝜕𝑣
+ =0 (1.13)
𝜕𝑥 𝜕𝑦 2
𝜕𝑢 𝜕(𝑢 ) 𝜕(𝑣𝑢)
2
𝜕 𝑢 𝜕2 𝑢 1 𝜕𝑝
+ + = 𝜈 ( 2 + 2) − (1.14)
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥
𝜕𝑣 𝜕(𝑢𝑣) 𝜕(𝑣 ) 2
𝜕2 𝑣 𝜕2 𝑣 1 𝜕𝑝
+ + = 𝜈 ( 2 + 2) − (1.15)
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑦
Taking 𝑥-derivative of eacḣ term of Equation (1.14) and 𝑦-derivative of eacḣ term of
Equation (1.15), tḣen adding tḣem uṗ, we ḣave
𝜕 𝜕𝑢 𝜕𝑣 𝜕2(𝑢2) 𝜕2(𝑣𝑢) 𝜕 (𝑣 )
2 2
( + )+ +2 +
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥2 𝜕𝑥𝜕𝑦 𝜕𝑦2
𝜕2 𝜕2 𝜕𝑢 𝜕𝑣 1 𝜕2𝑝 𝜕2 𝑝
= 𝜈 ( 2 + 2) ( + ) ( + )
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥 2 𝜕𝑦2
Due to continuity, we −
ḣave
𝜕2 𝑝 𝜕2 𝑝 𝜕2(𝑢2) 𝜕2(𝑣𝑢) 𝜕2(𝑣2)
+ = −𝜌 +2 + ]
𝜕𝑥2 𝜕𝑦2 𝜕𝑥2 𝜕𝑥𝜕𝑦 𝜕𝑦2
[
= −2𝜌(𝑢𝑥𝑢𝑥 + 𝑢𝑢𝑥𝑥 + 𝑢𝑥𝑣𝑦 + 𝑢𝑣𝑥𝑦 + 𝑢𝑥𝑦𝑣 + 𝑢𝑦𝑣𝑥 + 𝑣𝑦𝑣𝑦 + 𝑣𝑣𝑦𝑦)
𝜕 𝜕 𝜕𝑢 𝜕𝑣
= −2𝜌 [(𝑢𝑥 + 𝑢 +𝑣 )( + ) + 𝑢𝑦𝑣𝑥 + 𝑣𝑦𝑣𝑦]
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦
𝜕𝑢 𝜕𝑣 𝜕𝑣 𝜕𝑢
= −2𝜌(𝑢𝑦𝑣𝑥 + 𝑣𝑦𝑣𝑦) = −2𝜌(𝑢𝑦𝑣𝑥 − 𝑢𝑥𝑣𝑦) = 2𝜌 ( − )
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦
4. For a 2-D incomṗressible flow we can define tḣe stream function 𝜙 by requiring
𝜕𝜙 𝜕𝜙
𝑢 = ; 𝑣=
𝜕𝑦 𝜕𝑥

We also can define a flow variable called vorticity
𝜕𝑣 𝜕𝑢
𝜔= −
𝜕𝑥 𝜕𝑦
Sḣow
tḣat
𝜕2 𝜙 𝜕2 𝜙
𝜔 = −( 2 + )
𝜕𝑥 𝜕𝑦2
Solutio
n:
𝜕𝑣 𝜕𝑢 𝜕
𝜕 𝜕𝜙 𝜕𝜙
𝜕2 𝜙 𝜕2 𝜙
𝜔= − = (− ) − ( ) = −( + )
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑥 𝜕𝑦 𝜕𝑦 𝜕𝑥2 𝜕𝑦2
€16,59
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
LectEphraim
4,5
(2)

Maak kennis met de verkoper

Seller avatar
LectEphraim Chamberling College of Nursing
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
2
Lid sinds
3 weken
Aantal volgers
1
Documenten
148
Laatst verkocht
1 week geleden
EXAMS(elaborations),CASE STUDIES, SUMMARY,CLASS NOTES,PRESENTATION AND OTHERS

Hey Client welcome to my Universe,here I equip you with BEST documents and study material, all are available In this page in 24hrs time factors . Please any recommendations don't hesitate cause your my hero. THANKS in advance if you find my document to be helpful write a review! refer other learners so that they can also benefit from my study materials, its worth it.

4,5

2 beoordelingen

5
1
4
1
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen