100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

summary / samenvattende nota's large scale analysis of biomedical data

Beoordeling
-
Verkocht
-
Pagina's
38
Geüpload op
20-12-2025
Geschreven in
2025/2026

Samenvattende nota's van het vak 'large scale analysis of biomedical data' onderwezen door onder professoren De Preter, Everaert, Gabriels, , Bouwmeester, Colpaert en Rashidian. Gebaseerd op de Powerpoints en lessen.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
20 december 2025
Aantal pagina's
38
Geschreven in
2025/2026
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

LARGE SCALE ANALYSIS OF BIOMEDICAL DATA
Data-mining workflow ..........................................................................................................................2
Machine learning and data visualisation .............................................................................................. 20
Research data management ............................................................................................................... 26
Real world data .................................................................................................................................. 29
Generative AI ..................................................................................................................................... 33
Encryption ......................................................................................................................................... 36




1

,DATA-MINING WORKFLOW




FROM QUESTION TO DATA
DEFINE PROJECT AIM – QUESTION – HYPOTHESIS – OBJECTIVES
 Goal: broad – long-term outcome – vision – impact
 Broad visionary
 Aim: purpose – overall objective – research aim
 Focused and general
 Research question: central scientific question
 Precise and interrogative
 Hypothesis: testable statement – predicting relationship between variables
 Predictive and testable
 Objectives: specific measurable steps
 Concrete and actionable
o Define what proteins are differentially expressed in healthy  diseased tissues
o Identify the regulatory pathways that are affected upon drug treatment in cell lines
o Determine whether treatment A results in more pronounced tumour shrinkage mice
compared to conventional therapies
o Compare the blood cell counts in patient group 1 versus patient group 2
! explorative: tentative – little is known yet
 descriptive research: conclusive – explore and explain a situation


EXPERIMENTAL AND STUDY DESIGN
= how do you organise your experiment and generate the data to learn about an
a priori defined hypothesis or answer the biological question of interest




2

,FACTORS OF INTEREST
 What experiments will you set up – what samples/material will you analyse – collection
e.g. concentrations of compound
 Prospective  retrospective
 Prospective: watches for outcome + relates to other factors
o Take a cohort of subjects
o Watch over a long period
o Minimalize bias and loss of follow-up
! mostly cohort studies
- Outcome is measured after exposure/test
- Yields true incidence and relative risks
- May uncover unanticipated associations
- Best for common outcomes
- Takes a long time to complete
- Prone to attribution bias
- Prone to the bias of change in methods over time
 Retrospective: looks backwards
+ examine exposure to risk or protection factors
o minimalize bias and confounding
! mostly case-control
- outcome is measured before exposure/test
- controls: selected on not having the outcome
- good for rare outcomes
- quicker to complete
- prone to selection bias
- prone to recall/retrospective bias



CONFOUNDING
= influence the result – but not interested in them
e.g. layout of 96-well plate – organisation of mice in cages – batches of materials used

 Batches: performed on different days – by different people – different reagents – different location
! not all batch effects are confounding: random noise
 Inability to distinguish effect of one factor (interesting) from the effect of another (confounding)




 Severity
o Complete confounding: impossible to fix after the experiment
o Incomplete confounding: work around it in the analysis – but statistical power suffer
! dependent on the effect of the confounding factor




3

,  Detection
o Possible: unexpectedly good separation between groups
o Visualize factors in experiment: replicates next to each other (instead of underneath)




 Solution
o Avoid confounding during planning phase
- Exclude nuisance factors if possible
- Balance biological factors if possible
- Randomise if possible and relevant




o Include batch information in experimental metadata

SAMPLE NUMBERS – REPLICATES
 Replicates
 Types
o Genuine replicate: increases sample size N
Biological replicate: often but not always equivalent to genuine replicate
= use different biological samples of the same condition to measure the biological
variation between samples
o Pseudoreplicate: does not increase sample size N
Technical replicate: often but not always equivalent to pseudoreplicate
= use the same biological sample to repeat the technical or experimental steps in
order to accurately measure technical variation and remove it during analysis
! happens when observations share some important factor
e.g. same batch of reagents – treatment x all from the same litter – …

! research question: genuine replication on one level becomes pseudo on higher level
e.g. learning about lung cancer cell line: each replicate within cell line increases N
 learning about lung cancer: each replicate within a particular line is pseudo
 Effect: pseudoreplicates don’t contain the same amount of info as genuine replicates
= falsely shrinks uncertainty estimates and results in too low/significant p-values




4

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
emmapot Universiteit Gent
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
107
Lid sinds
2 jaar
Aantal volgers
17
Documenten
24
Laatst verkocht
2 dagen geleden

4,1

7 beoordelingen

5
2
4
4
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen