100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Data Science and ethics (2104TEWDAS)

Beoordeling
3,0
(2)
Verkocht
33
Pagina's
121
Geüpload op
11-02-2021
Geschreven in
2020/2021

Samenvatting van de hoorcolleges Data Science and Ethics. Met deze samenvatting haalde ik 18/20.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
11 februari 2021
Aantal pagina's
121
Geschreven in
2020/2021
Type
Samenvatting

Voorbeeld van de inhoud

Data science and ethics
Inhoud
Inleiding .................................................................................................................................. 6
Course and Evaluation........................................................................................................ 6
Why care? ........................................................................................................................... 6
1. Expected from society ............................................................................................................. 6
2. Huge potential risks ................................................................................................................. 6
3. Potential benefits .................................................................................................................... 7
4. Future ...................................................................................................................................... 7
5. SciFi becomes Sci ..................................................................................................................... 7
Goal of the course .................................................................................................................. 8
Ethics in the News................................................................................................................... 8
Data science ethics ................................................................................................................. 8
Trolley Problem .................................................................................................................. 9
Ethics of self-driving cars .................................................................................................... 9
Data, Algorithms and Models........................................................................................... 10
Different Roles.................................................................................................................. 11
FAT ........................................................................................................................................ 11
FAT Flow: a Data Science Ethics Framework .................................................................... 12
FAT Flow: Concepts and Techniques ................................................................................ 13
FAT Flow: Cautionary Tales .............................................................................................. 13
Subjectivity of ethics ........................................................................................................ 13
Discussion Case 1....................................................................................................................... 14
Fair Data Gathering .......................................................................................................... 14
Transparent Data Gathering............................................................................................. 14
Discussion Case 2....................................................................................................................... 14
Fair Data Preparation ....................................................................................................... 15
Transparent Data Preparation ......................................................................................... 15
Fair Data Modelling .......................................................................................................... 15
Transparant Data Modeling ............................................................................................. 15
Fair Model Evaluation ...................................................................................................... 15
Transparent Model Evaluation ......................................................................................... 16
Fair Model Deployment ................................................................................................... 16
Transparent Model Deployment ...................................................................................... 16
Beyond Data Science Ethics .................................................................................................. 16

1

, Ethical AI Frameworks .......................................................................................................... 16
IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems (2018) ............ 16
Ethics guidelines for trustworthy AI (2019) ..................................................................... 17
White House Executive Order on Maintaining American Leadership in Artificial
Intelligence, Feb. 2019 ..................................................................................................... 17
ISO .................................................................................................................................... 17
Discussion Case 3....................................................................................................................... 17
Ethical Data Gathering ............................................................................................................. 18
Privacy and GDPR ................................................................................................................. 18
Privacy .............................................................................................................................. 18
GDPR ................................................................................................................................. 20
GDPR key concepts .................................................................................................................... 20
Discussion Case 1....................................................................................................................... 24
CIA ......................................................................................................................................... 24
Privacy Mechanisms: Encryption and hashing ..................................................................... 24
Symmetric encryption ...................................................................................................... 26
Asymmetric encryption .................................................................................................... 26
Encryption for data protection......................................................................................... 28
Hashing ............................................................................................................................. 29
Quantum Computing ........................................................................................................ 32
Obfuscation ...................................................................................................................... 33
Government Backdoor ......................................................................................................... 33
Public data ............................................................................................................................ 35
Clearview.AI...................................................................................................................... 36
Bias ........................................................................................................................................ 36
Sample Bias ...................................................................................................................... 37
Experimentation ................................................................................................................... 39
Summary data gathering ...................................................................................................... 41
Ethical Data Preprocessing ....................................................................................................... 41
Input Selection ................................................................................................................. 41
Discrimination against sensitive groups: Data Preprocessing for non-discrimination ........ 42
Measuring ......................................................................................................................... 42
Proxies for discrimination.......................................................................................................... 42
Methods ........................................................................................................................... 43
1. Massaging: Relabeling ........................................................................................................... 43
2. Reweighing ............................................................................................................................ 45

2

, 3. Sampling ................................................................................................................................ 47
Experiments ............................................................................................................................... 47
Conclusions................................................................................................................................ 48
Privacy ................................................................................................................................... 49
Defining Target Variable................................................................................................... 49
Measuring Fairness (Revisited) ........................................................................................ 49
COMPAS case............................................................................................................................. 50
Methods to include privacy .............................................................................................. 50
Anonymizing Data ..................................................................................................................... 50
Online Re-identificaiton ................................................................................................... 53
Conclusion: ....................................................................................................................... 55
Data Preprocessing and Modelling: Privacy ............................................................................. 55
Data preprocessing ............................................................................................................... 55
K-anonymity ..................................................................................................................... 55
Recap k-anonymity .................................................................................................................... 55
L-diversity ......................................................................................................................... 56
T-closeness ....................................................................................................................... 58
Differential privacy ........................................................................................................... 59
Privacy loss parameter ε............................................................................................................ 62
How do we add this noise? ....................................................................................................... 63
Assumption 1: Single Count Query. Needed? ........................................................................... 64
Assumption 2: trusted data curator .......................................................................................... 66
Conclusion ........................................................................................................................ 68
Ethical Modelling: Including Privacy and Preferences ............................................................. 69
Including Privacy ................................................................................................................... 69
Differential Privacy ........................................................................................................... 69
Zero Knowledge Proofs .................................................................................................... 69
Homomorphic Encryption ................................................................................................ 70
Secure Multi Party Communication ................................................................................. 72
Applications ............................................................................................................................... 74
Federated Learning .......................................................................................................... 75
Federated Averaging ................................................................................................................. 76
Applications ............................................................................................................................... 77
Overview........................................................................................................................... 77
Including Preferences ........................................................................................................... 78


3

, Including domain knowledge: monotonicity constraints................................................. 78
Trolley problem ................................................................................................................ 79
Including Ethical Preferences .................................................................................................... 79
Ethical Modelling: Including fairness and Explainable AI ......................................................... 81
Fairness in modeling stage: measures and methods ........................................................... 81
Measures .......................................................................................................................... 81
Measuring fairness of Y’ ............................................................................................................ 81
Methods ........................................................................................................................... 83
COMPAS ........................................................................................................................... 83
Including Fairness in Modeling ......................................................................................... 84
Explainable AI ....................................................................................................................... 85
Why need for explanations .............................................................................................. 85
Trust........................................................................................................................................... 85
Compliance ................................................................................................................................ 87
Insight ........................................................................................................................................ 87
Improve ..................................................................................................................................... 87
Comprehensible and Explaining ....................................................................................... 88
Global and instance-based explanation methods............................................................ 89
Explanations .............................................................................................................................. 89
ANN/SVM Rule Extraction ......................................................................................................... 90
SVM Rule Extraction .................................................................................................................. 91
Linear Models ............................................................................................................................ 93
Instance-based explanations ..................................................................................................... 93
Advantages ................................................................................................................................ 97
Challenges ................................................................................................................................. 98
Conclusion ................................................................................................................................. 98
Ethical Reporting ...................................................................................................................... 98
Ethical Reporting .............................................................................................................. 98
p-Hacking ................................................................................................................................... 99
Multiple comparisons .............................................................................................................. 100
Case 1: Twitter to predict stock market .................................................................................. 101
Case 2: Reporting in credit scoring .......................................................................................... 103
Introduction to validation ....................................................................................................... 103
Quantitative validation ............................................................................................................ 104
Qualitative validation .............................................................................................................. 108
The advertising technology industry .............................................................................. 108
4

Beoordelingen van geverifieerde kopers

Alle 2 reviews worden weergegeven
2 jaar geleden

only the slides

2 jaar geleden

3,0

2 beoordelingen

5
1
4
0
3
0
2
0
1
1
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
studentam1 Universiteit Antwerpen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
96
Lid sinds
7 jaar
Aantal volgers
80
Documenten
23
Laatst verkocht
11 maanden geleden

3,1

9 beoordelingen

5
2
4
1
3
3
2
2
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen