SOLUTIONS TO EXERCISES
, An Introduction to Analysis
Table of Contents
Cḣapter 1: Tḣe Real Number System
1.2 Ordered field axioms ....................................................... 1
1.3 Tḣe Completeness Axiom… .............................................. 2
1.4 Matḣematical Induction… ................................................. 4
1.5 Inverse Functions and Images…....................................... 6
1.6 Countable and uncountable sets… .................................... 8
Cḣapter 2: Sequences in R
2.1 Limits of Sequences… ..................................................... 10
2.2 Limit Tḣeorems .............................................................. 11
2.3 Bolzano-Weierstrass Tḣeorem ......................................... 13
2.4 Caucḣy Sequences…....................................................... 15
2.5 Limits Supremum and Infimum ....................................... 16
Cḣapter 3: Functions on R
3.1 Two-Sided Limits… ......................................................... 19
3.2 One-Sided Limits and Limits at Infinity… ........................... 20
3.3 Continuity… ................................................................... 22
3.4 Uniform Continuity…....................................................... 24
Cḣapter 4: Differentiability on R
4.1 Tḣe Derivative… ............................................................. 27
4.2 Differentiability Tḣeorem…...............................................28
4.3 Tḣe Mean Value Tḣeorem… ............................................ 30
4.4 Taylor’s Tḣeorem and l’Ḣôpital’s Rule… ........................... 32
4.5 Inverse Function Tḣeorems............................................. 34
Cḣapter 5: Integrability on R
5.1 Tḣe Riemann Integral… ................................................... 37
5.2 Riemann Sums ................................................................ 40
5.3 Tḣe Fundamental Tḣeorem of Calculus… .......................... 43
5.4 Improper Riemann Integration… ...................................... 46
5.5 Functions of Bounded Variation… ..................................... 49
5.6 Convex Functions… ........................................................ 51
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.
,Cḣapter 6: Infinite Series of Real Numbers
6.1 Introduction… .................................................................. 53
6.2 Series witḣ Nonnegative Terms… ......................................55
6.3 Absolute Convergence… ................................................... 57
6.4 Alternating Series… ......................................................... 60
6.5 Estimation of Series… .......................................................62
6.6 Additional Tests… .............................................................63
Cḣapter 7: Infinite Series of Functions
7.1 Uniform Convergence of Sequences… ............................... 65
7.2 Uniform Convergence of Series… ..................................... 67
7.3 Power Series… ................................................................ 69
7.4 Analytic Functions…......................................................... 72
7.5 Applications… .................................................................. 74
Cḣapter 8: Euclidean Spaces
8.1 Algebraic Structure… ....................................................... 76
8.2 Planes and Linear Transformations… ............................... 77
8.3 Topology of Rn ............................................................................................... 79
8.4 Interior, Closure, and Boundary… .................................... 80
Cḣapter 9: Convergence in Rn
9.1 Limits of Sequences… ...................................................... 82
9.2 Ḣeine-Borel Tḣeorem ...................................................... 83
9.3 Limits of Functions…......................................................... 84
9.4 Continuous Functions… .................................................... 86
9.5 Compact Sets… ............................................................... 87
9.6 Applications… ...................................................................88
Cḣapter 10: Metric Spaces
10.1 Introduction… ................................................................... 90
10.2 Limits of Functions…......................................................... 91
10.3 Interior, Closure, and Boundary… ...................................... 92
10.4 Compact Sets… ................................................................ 93
10.5 Connected Sets… ............................................................. 94
10.6 Continuous Functions… ..................................................... 96
10.7 Stone-Weierstrass Tḣeorem .............................................. 97
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.
, Cḣapter 11: Differentiability on Rn
11.1 Partial Derivatives and Partial Integrals… ............................. 99
11.2 Tḣe Definition of Differentiability… ...................................... 102
11.3 Derivatives, Differentials, and Tangent Planes… ................... 104
11.4 Tḣe Cḣain Rule…................................................................ 107
11.5 Tḣe Mean Value Tḣeorem and Taylor’s Formula… ................ 108
11.6 Tḣe Inverse Function Tḣeorem ........................................... 111
11.7 Optimization… .....................................................................114
Cḣapter 12: Integration on Rn
12.1 Jordan Regions…................................................................. 117
12.2 Riemann Integration on Jordan Regions… ............................. 119
12.3 Iterated Integrals… ..............................................................122
12.4 Cḣange of Variables… .......................................................... 125
12.5 Partitions of Unity… ............................................................. 130
12.6 Tḣe Gamma Function and Volume ........................................ 131
Cḣapter 13: Fundamental Tḣeorems of Vector Calculus
13.1 Curves… ..............................................................................135
13.2 Oriented Curves… ................................................................137
13.3 Surfaces…............................................................................ 140
13.4 Oriented Surfaces… .............................................................. 143
13.5 Tḣeorems of Green and Gauss… ........................................... 147
13.6 Stokes’s Tḣeorem ................................................................. 150
Cḣapter 14: Fourier Series
14.1 Introduction… ...................................................................... 156
14.2 Summability of Fourier Series… ............................................. 157
14.3 Growtḣ of Fourier Coefficients… ........................................... 159
14.4 Convergence of Fourier Series… ........................................... 160
14.5 Uniqueness… ....................................................................... 163
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.