100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Instructor’s Solutions Manual for College Algebra 5th Edition by Beecher, Penna & Bittinger

Beoordeling
-
Verkocht
-
Pagina's
725
Cijfer
A+
Geüpload op
21-11-2025
Geschreven in
2025/2026

The Instructor’s Solutions Manual for College Algebra, 5th Edition by Judith Beecher, Judith Penna, and Marvin Bittinger provides detailed, step-by-step solutions to every exercise in the text, ensuring instructors have a reliable and comprehensive teaching resource. The manual is structured to align perfectly with the textbook’s organization, beginning with Graphs, Functions, and Models, covering graphing fundamentals, linear functions, slope, equations of lines, and linear inequalities. It then expands into More on Functions, addressing increasing and decreasing behavior, algebra and composition of functions, symmetry, transformations, and variation. In the section on Quadratic Functions and Equations; Inequalities, instructors will find fully worked examples on quadratic models, complex numbers, rational and radical equations, and absolute value applications. The manual also includes extensive solutions for Polynomial Functions and Rational Functions, including polynomial division, remainder and factor theorems, zeros of polynomials, graphing techniques, and rational inequalities. The coverage of Exponential and Logarithmic Functions provides detailed solutions for inverse functions, exponential and logarithmic equations, graph analysis, logarithmic properties, and real-world growth and decay applications such as compound interest. The Systems of Equations and Matrices section is equally comprehensive, walking through solutions in two and three variables, matrix operations, determinants, Cramer’s Rule, partial fractions, and linear programming problems. Advanced algebra topics are supported with clear solutions in Conic Sections, where parabolas, circles, ellipses, hyperbolas, and nonlinear systems are analyzed in detail. The manual concludes with Sequences, Series, and Combinatorics, offering full solutions for arithmetic and geometric sequences, mathematical induction, permutations, combinations, the binomial theorem, and probability problems.

Meer zien Lees minder
Instelling
College Algebra
Vak
College Algebra











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
College Algebra
Vak
College Algebra

Documentinformatie

Geüpload op
21 november 2025
Aantal pagina's
725
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

College Algebra – 5th Edition

INSTRUCTOR’S
TU
V

SOLUTIONS
IA

MANUAL
?_
AP

Judith A. Beecher, Judith A. Penna, Marvin L. Bittinger
PR

Complete Solutions Manual for Instructors and
OV

Students
ED
© Judith A. Beecher, Judith A. Penna & Marvin L. Bittinger

All rights reserved. Reproduction or distribution without permission is prohibited.
??
??

©Medexcellence ✅��

,TU
Contents
Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
V
Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . 57
IA
Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . 107

Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . 249
?_
Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . 305

Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . 357
AP
Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . 399

Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . 451

Chapter 10 . . . . . . . . . . . . . . . . . . . . . . . . . 551
PR
Chapter 11 . . . . . . . . . . . . . . . . . . . . . . . . . 635

Just-in-Time Review . . . . . . . . . . . . . . . . . . . . . 677

Chapter R . . . . . . . . . . . . . . . . . . . . . . . . . . 687
OV
ED
??
??

, Chapter 1
Graphs, Functions, and Models
TU
4. y
Exercise Set 1.1
4 (1, 4)
V
1. Point A is located 5 units to the left of the y-axis and 2
(5, 0) (4, 0)
4 units up from the x-axis, so its coordinates are (−5, 4). 4 2 2 4 x
Point B is located 2 units to the right of the y-axis and 2
(4, 2)
2 units down from the x-axis, so its coordinates are (2, −2).
IA
4 (2, 4)
Point C is located 0 units to the right or left of the y-axis
and 5 units down from the x-axis, so its coordinates are
(0, −5). 5. To graph (−5, 1) we move from the origin 5 units to the
left of the y-axis. Then we move 1 unit up from the x-axis.
Point D is located 3 units to the right of the y-axis and
?_
5 units up from the x-axis, so its coordinates are (3, 5). To graph (5, 1) we move from the origin 5 units to the right
of the y-axis. Then we move 1 unit up from the x-axis.
Point E is located 5 units to the left of the y-axis and
4 units down from the x-axis, so its coordinates are To graph (2, 3) we move from the origin 2 units to the right
(−5, −4). of the y-axis. Then we move 3 units up from the x-axis.
Point F is located 3 units to the right of the y-axis and To graph (2, −1) we move from the origin 2 units to the
AP
0 units up or down from the x-axis, so its coordinates are right of the y-axis. Then we move 1 unit down from the
(3, 0). x-axis.
To graph (0, 1) we do not move to the right or the left of
2. G: (2, 1); H: (0, 0); I: (4, −3); J: (−4, 0); K: (−2, 3); the y-axis since the first coordinate is 0. From the origin
L: (0, 5) we move 1 unit up.
3. To graph (4, 0) we move from the origin 4 units to the right
y
PR
of the y-axis. Since the second coordinate is 0, we do not
move up or down from the x-axis.
4
To graph (−3, −5) we move from the origin 3 units to the (2, 3)
2
left of the y-axis. Then we move 5 units down from the (5, 1) (0, 1) (5, 1)
x-axis. 4 2 4 x
To graph (−1, 4) we move from the origin 1 unit to the left 2 (2, 1)
OV
of the y-axis. Then we move 4 units up from the x-axis. 4

To graph (0, 2) we do not move to the right or the left of
the y-axis since the first coordinate is 0. From the origin y
6.
we move 2 units up.
To graph (2, −2) we move from the origin 2 units to the 4
right of the y-axis. Then we move 2 units down from the (5, 2)
2
x-axis. (5, 0) (4, 0)
ED
4 2 2 4 x
y 2

4 (4, 3)
(1, 4) 4 (1, 5)
2 (0, 2)
(4, 0) 7. The first coordinate represents the year and the second co-
4 2 2 4 x
??
ordinate represents the number of Sprint Cup Series races
2 (2, 2)
in which Tony Stewart finished in the top five. The or-
(3, 5) 4 dered pairs are (2008, 10), (2009, 15), (2010, 9), (2011, 9),
(2012, 12), and (2013, 5).

8. The first coordinate represents the year and the second
??
coordinate represents the percent of Marines who are
women. The ordered pairs are (1960, 1%), (1970, 0.9%),
(1980, 3.6%), (1990, 4.9%), (2000, 6.1%), and (2011, 6.8%).


Copyright 
c 2016 Pearson Education, Inc.

, 2 Chapter 1: Graphs, Functions, and Models


9. To determine whether (−1, −9) is a solution, substitute 12. For (1.5, 2.6): x2 + y 2 = 9
−1 for x and −9 for y.
(1.5)2 + (2.6)2 ? 9
y = 7x − 2 
2.25 + 6.76 
TU

−9 ? 7(−1) − 2 9.01  9 FALSE

 −7 − 2 (1.5, 2.6) is not a solution.

−9  −9 TRUE For (−3, 0): x2 + y 2 = 9
The equation −9 = −9 is true, so (−1, −9) is a solution. (−3)2 + 02 ? 9
To determine whether (0, 2) is a solution, substitute 0 for 
9+0 

V
x and 2 for y.
9  9 TRUE
y = 7x − 2
(−3, 0) is a solution.
2 ? 7 · 0 − 2  1 4
IA
 13. To determine whether − , −
 0−2 is a solution, substitute
 2 5
2  −2 FALSE 1 4
− for a and − for b.
The equation 2 = −2 is false, so (0, 2) is not a solution. 2 5
  2a + 5b = 3
1  1  4
?_
10. For , 8 : y = −4x + 10
2 2 − +5 − ? 3
2 5 
1 
8 ? −4 · + 10 −1 − 4 
 2 
 −5  3 FALSE
 −2 + 10
  1 4
8  8
AP
TRUE The equation −5 = 3 is false, so − , − is not a solu-
  2 5
1 tion.
, 8 is a solution.  3
2 To determine whether 0, is a solution, substitute 0 for
5
For (−1, 6): y = −4x + 10 3
a and for b.
5
6 ? −4(−1) + 10
 2a + 5b = 3
PR
 4 + 10
 3
6  14 FALSE 2·0+5· ? 3
5 
(−1, 6) is not a solution. 
0+3 
2 3 
11. To determine whether , is a solution, substitute
2 3  3 TRUE
3 4 3  3
3
OV
for x and for y. The equation 3 = 3 is true, so 0, is a solution.
4 5
6x − 4y = 1  3
14. For 0, : 3m + 4n = 6
2 3 2
6· −4· ? 1 3
3 4  3·0+4· ? 6
 2 
4−3  
 0+6 
1  1 TRUE 
6  6 TRUE
ED
2 3
The equation 1 = 1 is true, so , is a solution.  3
3 4 0, is a solution.
 3 2
To determine whether 1, is a solution, substitute 1 for 2 
2
3 For ,1 : 3m + 4n = 6
x and for y. 3
2 2
??
6x − 4y = 1 3·
+4·1 ? 6
3 
3 
6·1−4· ? 1 2+4 
2  
6  6 TRUE

6−6  2 

0  1 FALSE The equation 6 = 6 is true, so , 1 is a solution.
??
3
 3
The equation 0 = 1 is false, so 1, is not a solution.
2


Copyright 
c 2016 Pearson Education, Inc.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
MedExcellence Western Governors University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
217
Lid sinds
1 jaar
Aantal volgers
90
Documenten
951
Laatst verkocht
3 weken geleden
MedExcellence: - Verified Solutions, Test Banks & Guides for Medical, Nursing, Business, Engineering, Accounting, Chemistry, Biology & Other Subjects

MedExcellence – Study Smarter with Expert-Curated Guides for Online Learners Are you a busy online student juggling work, life, and school? At MedExcellence, we specialize in providing A+ graded study guides, exam notes, and course summaries that help Western Governors University, SNHU, and ASU Online students master their coursework efficiently. Our materials are created by experienced professionals and top-performing students to help you: - Understand complex concepts quickly - Prepare confidently for assessments - Download instantly—no delays, no fluff - Perfect for competency-based learning - Covers business, healthcare, education, IT, and more - 100% digital and mobile-friendly for online learners Whether you're prepping for performance assessments, final exams, or weekly tasks—MedExcellence is your trusted study companion. Share with fellow online learners and boost your entire cohort's performance. Ace your courses with MedExcellence—optimized for the online student lifestyle.

Lees meer Lees minder
3,3

22 beoordelingen

5
10
4
2
3
2
2
1
1
7

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen