100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

Math 225 Final Exam – Latest Update 2025/2026 | Complete Questions & Answers

Beoordeling
-
Verkocht
-
Pagina's
9
Cijfer
A+
Geüpload op
17-11-2025
Geschreven in
2025/2026

Prepare effectively for the Math 225 Final Exam with this latest 2025/2026 updated resource. Includes all exam questions with verified answers, covering key topics such as calculus, algebra, functions, and problem-solving techniques. Ideal for exam preparation, self-study, and classroom review, this guide helps students master content, reinforce understanding, and excel on the exam.

Meer zien Lees minder
Instelling
Math 225
Vak
Math 225









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Math 225
Vak
Math 225

Documentinformatie

Geüpload op
17 november 2025
Aantal pagina's
9
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Math 225 Final Exam Latest update
2025/2026

If the columns of A are linearly dependent - correct answerThen the matrix is not
invertible and an eigenvalue is 0

Note that A−1 exists. In order for λ−1 to be an eigenvalue of A−1, there must exist a
nonzero x such that Upper A Superscript negative 1 Baseline Bold x equals lambda
Superscript negative 1 Baseline Bold x . A−1x=λ−1x. Suppose a nonzero x satisfies
Ax=λx. What is the first operation that should be performed on Ax=λx so that an
equation similar to the one in the previous step can be obtained? - correct answerLeft-
multiply both sides of Ax=λx by A−1.

Show that if A2 is the zero matrix, then the only eigenvalue of A is 0. - correct answerIf
Ax=λx for some x≠0, then 0x=A2x=A(Ax)=A(λx)=λAx=λ2x=0. Since x is nonzero, λ must
be zero. Thus, each eigenvalue of A is zero.

Finding the characteristic polynomial of a 3 x 3 matrix - correct answerAdd the first two
columns to the right side of the matrix and then add the down diagonals and subtract
the up diagonals

In a simplified n x n matrix the Eigenvalues are - correct answerThe values of the main
diagonal

Use a property of determinants to show that A and AT have the same characteristic
polynomial - correct answerStart with detAT−λI)=detAT−λI)=det(A−λI)T. Then use the
formula det AT=det A.

The determinant of A is the product of the diagonal entries in A. Select the correct
choice below and, if necessary, fill in the answer box to complete your choice. - correct
answerThe statement is false because the determinant of the
2×2 matrix A= [ 1 1 (1 1 below) ] is not equal to the product of the entries on the main
diagonal of A.

An elementary row operation on A does not change the determinant. Choose the
correct answer below. - correct answerThe statement is false because scaling a row
also scales the determinant by the same scalar factor.

(det A)(det B)=detAB. Select the correct choice below and, if necessary, fill in the
answer box to complete your choice. - correct answerThe statement is true because it is
the Multiplicative Property of determinants.

, If λ+5 is a factor of the characteristic polynomial of A, then 5 is an eigenvalue of A.
Select the correct choice below and, if necessary, fill in the answer box to complete your
choice. - correct answerThe statement is false because in order for 5 to be an
eigenvalue of A, the characteristic polynomial would need to have a factor of λ−5.

Determine whether the statement "If A is 3×3, with columns a1, a2, a3, then det A
equals the volume of the parallelepiped determined by a1, a2, a3" is true or false.
Choose the correct answer below. - correct answerThe statement is false because det
A equals the volume of the parallelepiped determined by a1, a2, a3. It is possible that
det A≠det A.

Determine whether the statement "det AT=(−1)det A"is true or false. Choose the correct
answer below. - correct answerThe statement is false because det AT=det A for any
n×n matrix A.

Determine whether the statement "The multiplicity of a root r of the characteristic
equation of A is called the algebraic multiplicity of r as an eigenvalue of A" is true or
false. Choose the correct answer below. - correct answerThe statement is true because
it is the definition of the algebraic multiplicity of an eigenvalue of A.

Determine whether the statement "A row replacement operation on A does not change
the eigenvalues" is true or false. Choose the correct answer below. - correct answerThe
statement is false because row operations on a matrix usually change its eigenvalues.

A matrix A is diagonalizable if A has n eigenvectors. - correct answerThe statement is
false. A diagonalizable matrix must have n linearly independent eigenvectors.

If A is diagonalizable, then A has n distinct eigenvalues - correct answerThe statement
is false. A diagonalizable matrix can have fewer than n eigenvalues and still have n
linearly independent eigenvectors.

If AP=PD, with D diagonal, then the nonzero columns of P must be eigenvectors of A. -
correct answerThe statement is true. Let v be a nonzero column in P and let λ be the
corresponding diagonal element in D. Then AP=PD implies that Av=λv, which means
that v is an eigenvector of A.

If A is invertible, then A is diagonalizable. - correct answerThe statement is false. An
invertible matrix may have fewer than n linearly independent eigenvectors, making it not
diagonalizable.

A is a 3×3 matrix with two eigenvalues. Each eigenspace is one-dimensional. Is A
diagonalizable? Why? - correct answerNo. The sum of the dimensions of the
eigenspaces equals 2 and the matrix has 3 columns. The sum of the dimensions of the
eigenspace and the number of columns must be equal.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Successscore Phoenix University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
29
Lid sinds
4 maanden
Aantal volgers
1
Documenten
1584
Laatst verkocht
1 dag geleden
Ultimate Study Resource | Nursing, HESI, ATI, TEAS, Business & More

Welcome to your one-stop exam prep store!

2,8

4 beoordelingen

5
0
4
2
3
0
2
1
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen