100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

TEST BANK FOR Mathematical Proofs: A Transition to Advanced Mathematics 4th Edition by Gary Chartrand, Albert Polimeni , Ping Zhang ISBN:978-0134746753 COMPLETE GUIDE All CHAPTERS COVERED 100% VERIFIED A+ GRADE ASSURED!!!!! NEW LATEST UPDATE!!!!!

Beoordeling
-
Verkocht
-
Pagina's
378
Cijfer
A+
Geüpload op
15-11-2025
Geschreven in
2025/2026

TEST BANK FOR Mathematical Proofs: A Transition to Advanced Mathematics 4th Edition by Gary Chartrand, Albert Polimeni , Ping Zhang ISBN:978-0134746753 COMPLETE GUIDE All CHAPTERS COVERED 100% VERIFIED A+ GRADE ASSURED!!!!! NEW LATEST UPDATE!!!!!

Meer zien Lees minder
Instelling
Mathematical Proofs: A Transition To Advanced Math
Vak
Mathematical Proofs: A Transition to Advanced Math











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Mathematical Proofs: A Transition to Advanced Math
Vak
Mathematical Proofs: A Transition to Advanced Math

Documentinformatie

Geüpload op
15 november 2025
Aantal pagina's
378
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

lOMoARcPSD|58847208

, lOMoARcPSD|58847208




Table of Contents
bn bn




0. Communicating Mathematics bn



0.1 Learning Mathematics bn



0.2 What Others Have Said About Writing
bn bn bn bn bn



0.3 Mathematical Writing bn



0.4 Using Symbols bn



0.5 Writing Mathematical Expressions bn bn



0.6 Common Words and Phrases in Mathematics bn bn bn bn bn



0.7 Some Closing Comments About Writing
bn bn bn bn




1. Sets
1.1 Describing a Set bn bn



1.2 Subsets
1.3 Set Operations
bn



1.4 Indexed Collections of Sets bn bn bn



1.5 Partitions of Sets bn bn



1.6 Cartesian Products of Sets Exercises for Chapter 1
bn bn bn bn bn bn bn




2. Logic
2.1 Statements
2.2 Negations
2.3 Disjunctions and Conjunctions bn bn



2.4 Implications
2.5 More on Implications bn bn



2.6 Biconditionals
2.7 Tautologies and Contradictions bn bn



2.8 Logical Equivalence bn



2.9 Some Fundamental Properties of Logical Equivalence
bn bn bn bn bn



2.10 Quantified Statements bn



2.11 Characterizations Exercises for Chapter 2 bn bn bn bn




3. Direct Proof and Proof by Contrapositive
bn bn bn bn bn



3.1 Trivial and Vacuous Proofs bn bn bn



3.2 Direct Proofs bn



3.3 Proof by Contrapositive bn bn



3.4 Proof by Cases bn bn



3.5 Proof Evaluations bn



Exercises for Chapter
bn bn bn bn



3

4. More on Direct Proof and Proof by Contrapositive
bn bn bn bn bn bn bn



4.1 Proofs Involving Divisibility of Integers
bn bn bn bn



4.2 Proofs Involving Congruence of Integers
bn bn bn bn



4.3 Proofs Involving Real Numbers bn bn bn



4.4 Proofs Involving Sets bn bn



4.5 Fundamental Properties of Set Operations bn bn bn bn



4.6 Proofs Involving Cartesian Products of Sets Exercises for Chapter 4
bn bn bn bn bn bn bn bn bn




5. Existence and Proof by Contradiction
bn bn bn bn



5.1 Counterexamples
5.2 Proof by Contradiction bn bn



iv

, lOMoARcPSD|58847208




5.3 A Review of Three Proof Techniques
bn bn bn bn bn

, lOMoARcPSD|58847208




5.4 Existence Proofs bn



5.5 Disproving Existence Statements Exercises for Chapter 5
bn bn bn bn bn bn




6. Mathematical Induction bn



6.1 The Principle of Mathematical Induction
bn bn bn bn



6.2 A More General Principle of Mathematical Induction
bn bn bn bn bn bn



6.3 The Strong Principle of Mathematical Induction
bn bn bn bn bn



6.4 Proof by Minimum Counterexample Exercises for Chapter 6
bn bn bn bn bn bn bn




7. Reviewing Proof Techniques
bn bn



7.1 Reviewing Direct Proof and Proof by Contrapositive
bn bn bn bn bn bn



7.2 Reviewing Proof by Contradiction and Existence Proofs
bn bn bn bn bn bn



7.3 Reviewing Induction Proofs bn bn



7.4 Reviewing Evaluations of Proposed Proofs Exercises for Chapter 7
bn bn bn bn bn bn bn bn




8. Prove or Disprove
bn bn



8.1 Conjectures in Mathematics bn bn



8.2 Revisiting Quantified Statements bn bn



8.3 Testing Statements Exercises for Chapter 8
bn bn bn bn bn




9. Equivalence Relations bn



9.1 Relations
9.2 Properties of Relations bn bn



9.3 Equivalence Relations bn



9.4 Properties of Equivalence Classes bn bn bn



9.5 Congruence Modulo n bn bn



9.6 The Integers Modulo n Exercises for Chapter 9
bn bn bn bn bn bn bn




10. Functions
10.1 The Definition of Function
bn bn bn



10.2 One-to-one and Onto Functions bn bn bn



10.3 Bijective Functions bn



10.4 Composition of Functions bn bn



10.5 Inverse Functions bn bn



Exercises for Chapter 10
bn bn bn




11. Cardinalities of Sets bn bn



11.1 Numerically Equivalent Sets bn bn



11.2 Denumerable Sets bn



11.3 Uncountable Sets bn



11.4 Comparing Cardinalities of Sets bn bn bn



11.5 The Schroder-Bernstein Theorem¨ Exercises for Chapter 11
bn bn bn bn bn bn




12. Proofs in Number Theory
bn bn bn



12.1 Divisibility Properties of Integers bn bn bn



12.2 The Division Algorithm
bn bn



12.3 Greatest Common Divisors bn bn



v


12.4 The Euclidean Algorithm
bn bn



12.5 Relatively Prime Integers bn bn



12.6 The Fundamental Theorem of Arithmetic
bn bn bn bn



12.7 Concepts Involving Sums of Divisors Exercises for Chapter 12
bn bn bn bn bn bn bn bn

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
MindFuel Harvard University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
41
Lid sinds
8 maanden
Aantal volgers
1
Documenten
397
Laatst verkocht
1 week geleden

4,2

9 beoordelingen

5
5
4
3
3
0
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen