100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Beoordeling
-
Verkocht
-
Pagina's
664
Cijfer
A+
Geüpload op
11-11-2025
Geschreven in
2025/2026

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Instelling
A First Course In Differential Equations
Vak
A First Course in Differential Equations











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
A First Course in Differential Equations
Vak
A First Course in Differential Equations

Documentinformatie

Geüpload op
11 november 2025
Aantal pagina's
664
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

A First Course in Differential
Equations with Modeling
Applications, 12th Edition by
Dennis G. Zill




Complete Chapter Solutions Manual
are included (Ch 1 to 9)




** Immediate Download
** Swift Response
** All Chapters included

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




Solution and Answer Guide
ZILL, DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS 2024,
9780357760192; CHAPTER #1: INTRODUCTION TO DIFFERENTIAL EQUATIONS


TABLE OF CONTENTS
End of Section Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Exercises 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Exercises 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Exercises 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Chapter 1 in Review Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



END OF SECTION SOLUTIONS
EXERCISES 1.1
1. Second order; linear
2. Third order; nonlinear because of (dy/dx)4
3. Fourth order; linear
4. Second order; nonlinear because of cos(r + u)
p
5. Second order; nonlinear because of (dy/dx)2 or 1 + (dy/dx)2
6. Second order; nonlinear because of R2
7. Third order; linear
8. Second order; nonlinear because of ẋ2
9. First order; nonlinear because of sin (dy/dx)
10. First order; linear
11. Writing the differential equation in the form x(dy/dx) + y 2 = 1, we see that it is nonlinear
in y because of y 2 . However, writing it in the form (y 2 − 1)(dx/dy) + x = 0, we see that it is
linear in x.
12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ueu we see that it is
linear in v . However, writing it in the form (v + uv − ueu )(du/dv) + u = 0, we see that it is
nonlinear in u.
13. From y = e−x/2 we obtain y ′ = − 12 e−x/2 . Then 2y ′ + y = −e−x/2 + e−x/2 = 0.




1

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations


6 6 −20t
14. From y = − e we obtain dy/dt = 24e−20t , so that
5 5
 
dy −20t 6 6 −20t
+ 20y = 24e + 20 − e = 24.
dt 5 5

15. From y = e3x cos 2x we obtain y ′ = 3e3x cos 2x−2e3x sin 2x and y ′′ = 5e3x cos 2x−12e3x sin 2x,
so that y ′′ − 6y ′ + 13y = 0.
16. From y = − cos x ln(sec x + tan x) we obtain y ′ = −1 + sin x ln(sec x + tan x) and
y ′′ = tan x + cos x ln(sec x + tan x). Then y ′′ + y = tan x.
17. The domain of the function, found by solving x+2 ≥ 0, is [−2, ∞). From y ′ = 1+2(x+2)−1/2
we have

(y − x)y ′ = (y − x)[1 + (2(x + 2)−1/2 ]

= y − x + 2(y − x)(x + 2)−1/2

= y − x + 2[x + 4(x + 2)1/2 − x](x + 2)−1/2

= y − x + 8(x + 2)1/2 (x + 2)−1/2 = y − x + 8.

An interval of definition for the solution of the differential equation is (−2, ∞) because y ′ is
not defined at x = −2.
18. Since tan x is not defined for x = π/2 + nπ , n an integer, the domain of y = 5 tan 5x is
{x 5x 6= π/2 + nπ}
or {x x 6= π/10 + nπ/5}. From y ′ = 25 sec2 5x we have

y ′ = 25(1 + tan2 5x) = 25 + 25 tan2 5x = 25 + y 2 .

An interval of definition for the solution of the differential equation is (−π/10, π/10). An-
other interval is (π/10, 3π/10), and so on.
19. The domain of the function is {x 4 − x2 6= 0} or {x x 6= −2 or x 6= 2}. From y ′ =
2x/(4 − x2 )2 we have
 2
1

y = 2x = 2xy 2 .
4 − x2
An interval of definition for the solution of the differential equation is (−2, 2). Other inter-
vals are (−∞, −2) and (2, ∞).

20. The function is y = 1/ 1 − sin x , whose domain is obtained from 1 − sin x 6= 0 or sin x 6= 1.
Thus, the domain is {x x =6 π/2 + 2nπ}. From y ′ = − 12 (1 − sin x)−3/2 (− cos x) we have

2y ′ = (1 − sin x)−3/2 cos x = [(1 − sin x)−1/2 ]3 cos x = y 3 cos x.

An interval of definition for the solution of the differential equation is (π/2, 5π/2). Another
one is (5π/2, 9π/2), and so on.


2

, Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




21. Writing ln(2X − 1) − ln(X − 1) = t and differentiating x

implicitly we obtain 4

2 dX 1 dX
− =1 2
2X − 1 dt X − 1 dt
 
2 1 dX t
− =1 –4 –2 2 4
2X − 1 X − 1 dt
–2
2X − 2 − 2X + 1 dX
=1
(2X − 1) (X − 1) dt
–4
dX
= −(2X − 1)(X − 1) = (X − 1)(1 − 2X).
dt

Exponentiating both sides of the implicit solution we obtain

2X − 1
= et
X −1
2X − 1 = Xet − et

(et − 1) = (et − 2)X

et − 1
X= .
et − 2

Solving et − 2 = 0 we get t = ln 2. Thus, the solution is defined on (−∞, ln 2) or on (ln 2, ∞).
The graph of the solution defined on (−∞, ln 2) is dashed, and the graph of the solution
defined on (ln 2, ∞) is solid.

22. Implicitly differentiating the solution, we obtain y

dy dy 4
−2x2 − 4xy + 2y =0
dx dx
2
−x2 dy − 2xy dx + y dy = 0
x
2xy dx + (x2 − y)dy = 0. –4 –2 2 4

–2
Using the quadratic formula to solve y 2 − 2x2 y − 1 = 0
√  √
for y , we get y = 2x2 ± 4x4 + 4 /2 = x2 ± x4 + 1 . –4

Thus, two explicit solutions are y1 = x2 + x4 + 1 and

y2 = x2 − x4 + 1 . Both solutions are defined on (−∞, ∞).
The graph of y1 (x) is solid and the graph of y2 is dashed.




3

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Fortunexams Teachme2-tutor
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
41
Lid sinds
3 maanden
Aantal volgers
1
Documenten
536
Laatst verkocht
1 week geleden
Fortunexams Test Banks & Practice Exams Graded A+

Looking for relevant and up-to-date study materials to help you ace your exams? Puregold has got you covered! We offer a wide range of study resources, including test banks, exams, study notes, and more, to help prepare for your exams and achieve your academic goals. What's more, we can also help with your academic assignments, research, dissertations, online exams, online tutoring and much more! Please send us a message and will respond in the shortest time possible. Always Remember: Don't stress. Do your best. Forget the rest! Gracias!

Lees meer Lees minder
3,0

4 beoordelingen

5
1
4
0
3
2
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen