100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Applied Data Science and Visualization ()

Beoordeling
5,0
(1)
Verkocht
7
Pagina's
42
Geüpload op
13-01-2021
Geschreven in
2020/2021

Samenvatting Applied Data Science and Visualization (), course ended with a 8,7 with the help of this summary. Let me know your grade!

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
13 januari 2021
Aantal pagina's
42
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Applied Data Science and Visualization 2020
Summary by Lode Notermans

Lecture 1
Different kinds of data analysis
Explorative data analysis (EDA)
Unsupervised learning
Supervised learning
Trade-off between prediction accuracy and model interpretability
Measuring the quality of fit
Bias Variance trade-off

Lecture 2
Grammar of graphics
Colors are perceived relatively

Lecture 3
Cross validation
Leave-one-out cross-validation (LOOCV)
k-fold Cross validation
Somewhat higher bias than LOOCV due to smaller training set for each iteration
(but smaller bias than Validation-set method due to larger training set than VS.)
Bias-Variance Trade-Off for k-Fold Cross-Validation
Using CV for classification problems

Lecture 4
Model Selection and Regularization
Subset selection
Forward stepwise selection
Backward stepwise selection
Penalized (regularized) regression
Ridge regression
Lasso regression
Lasso versus ridge regression, which method is better?
Selecting the best λ

Lecture 5
k-Nearest neighbors
Logistic regression
Interpretation of logistic regression
Evaluation of classifiers
Confusion matrix
ROC curve

,Lecture 6
Polynomial regression
Step functions
Splines
Natural splines
Choosing K (number of knots) and placement
Smoothing splines
Local regression
Multiple predictors: Generalized additive models
Conclusions

Lecture 7
What is a Shiny app?
Building basic UI
Reactivity
Final remarks on shiny

Lecture 8

Lecture 9

,Lecture 1
ISLR Chapter 1, 2

Different kinds of data analysis

Exploratory Confirmatory

Description EDA, One-sample t-test
Unsupervised learning

Prediction Supervised learning Macroeconomics

Explanation John Snow and the cholera Causal modeling
outbreak

Prescription Personalized medicine A/B testing

Exploratory data analysis (EDA)

Describing interesting patterns: use graphs,
summaries, to understand subgroups, detect
anomalies (“outliers”), understand the data


Examples: boxplot, five-number summary,
histograms, scatterplots…




Unsupervised learning

Inputs, but no outputs. Try to learn
structure and relationships from
these data, like detecting
unobserved groups (clusters) from
the data.




Assumptions about structural properties of the data
Dimension reduction methods

, ● Principal components analysis
● Factor analysis
● Random projections
Clustering
● K-means clustering


Supervised learning

Building a statistical model for predicting /
estimating an output based on one or more
inputs.




Most widely used machine-learning methods
are supervised
● Spam classifiers of e-mail
● Face recognizers over images
● Medical diagnosis systems for patients
Methods include
● (logistic) Regression
● Decision trees/random forests
● Support vector machines
● Neural networks


Classification Regression

Classification: predict to which category an Regression: predict a quantitative outcome
observation belongs (qualitative outcomes)




Trade-off between prediction accuracy and model interpretability
If the researcher is mainly interested in inference, a
more restrictive model is more useful, but when the
researcher is interested in prediction a more loose
model is more useful. While one might argue that a
more flexible model is always better, flexible models
lead to such complicated estimates of f that it is
difficult to understand how any individual predictor is
associated with the response. So a trade-off between
flexibility and interpretability has to be found. Because
€5,19
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
notermanslode
5,0
(1)

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
6 maanden geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
notermanslode Universiteit Utrecht
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
8
Lid sinds
4 jaar
Aantal volgers
7
Documenten
2
Laatst verkocht
7 maanden geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen