100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary of Statistics Chapters 6,7 and 8,

Beoordeling
-
Verkocht
-
Pagina's
9
Geüpload op
22-10-2025
Geschreven in
2025/2026

Summary of Statistics including chapters 6, 7.1, 7.2 and 8.1, 8.2, and 8.3. Concrete definitions included as well as formulas.

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
22 oktober 2025
Aantal pagina's
9
Geschreven in
2025/2026
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Chapter 6: Random Variables and Probability Distributions
Describing the distribution of a variable in probabilistic terms
Random variable = a numerical measurement of the outcome of a random phenomenon
 Use of random sampling or performing a randomized experiment and as a consequence, the
values that a random variable takes on are determined by chance
 Denoted by a capital letter: X
o Possible values of a random variable is denoted as a low-capital letter: x
 The randomness allows for the possible values of a random variable to specify the
probabilities (in the long run)
o Discrete = takes on values form a set of separate values (0, 1, 2, 3, etc)
o Continuous = takes on values on an infinite number of possible values in an interval
1. Probability distribution = specifies the possible values and their probabilities of a random
variable
 Discrete random variable
o Assigning a probability to each possible value
 Each probability falls between 0 and 1
 Sum of the probabilities of all possible values equals 1
 Probability of a possible value (x) is denoted by P(x)
 For each x, the probability P(x) falls between 0 and 1
 Continuous random variable
o Assigning a probability to any interval of the possible value
 Each probability falls between 0 and 1
 Sum of the probabilities in an internval of all possible values equals 1
 As the number of intervals increases, their width narrows, the shape
of the histogram approaches a smooth curve
 You need to round off measurements as probabilities of given for intervals of
values instead of individual values
 In practice, continuous variables are measured in a discrete manner
because of rounding
Characteristics of a probability distribution
o Parameter = a numerical summary of the population
 Population distribution = a type of probability distribution that applies for selecting a
subject at random from a population
 The distribution of the variable of interest in the population from which we
sample
 μ = mean of a probability distribution
 Weighted average = each x value is not equally likely
 If a particular x value is more likely to occur, it ha larger influence on
the mean
 Balance point of the distribution
 Equally likely outcomes (such as rolling a die)
 ΣxP(x) = Σx(1/6) = (1 + 2 + 3 + 4 + 5 + 6) / 6 = 3.5
 Expected value of X = reflects what we expect for the average in a long run of
observations to be
 μ = ΣxP(x)
 Multiplying each possible value of the random variable by its
probability and then adding all these products
 Generalizes the ordinary formula for the mean to allow for outcomes
that are not equally likely
 E.g. the number of games played in a best of seven series
 σ = standard deviation of a probability distribution

,  Measures the variability from the mean (center)
 Larger values for σ refer to greater variability
 Describes how far values of the random variable fall, on the average,
from the mean of the distribution
 Variance of a probability distribution = the squared deviations from the
mean
 Σ2 = Σ(x - μ)2p(x)
 Calculate the mean, μ, of the random variable
 For each value xi, subtract the mean and square the result: (x i - μ)2
 Sum all of these products to get the variance
 Standard deviation of a probability distribution = describes the typical
distance for the values of the random variable X from their mean
 σ = √Σ(x - μ)2P(x)
 Take the square root of the variance to get the standard deviation
 The smaller the standard deviation, the closer the values of the
random variable tend to fall to the mean
o Normal distribution = a probability distribution that is used for continuous random variables
 Plays a key role in statistical inference
 Many variables have approximately normal distributions
 Approximates many discrete distributions when there are a large number of possible
outcomes
 Bell-shape
Parameters
 Mean, μ: expresses the center
 Standard deviation, σ: expresses the variability
 The probability of falling within 1, 2, or 3 standard deviations of the mean equals 0.68, 0.95
and 0.997, respectively (because of the empirical rule)
 For any value of μ
 For any value of σ > 0
 μ - zσ and μ + zσ
 The number of standard deviations from the mean are denoted by z
 Z-score = number of standard deviations that x falls from the mean
of the probability distribution
 You are given a value x and need to find a probability
 Convert x to a z-score: z = (x - μ) / σ
 You are give a probability and need to find the value of x
 Convert the probability to the related cumulative
probability
 Find the z-score
 Evaluate: x = μ + zσ
 When we are given the value of x for some normal random
variable and need to find a probability relating to that value
 Can be used by any distribution
 To express how far an observation in the sample is from the
sample mean
 How far a value of a random variable is from the mean of the
probability distribution
 And to compare values from two different normal
distributions
 E.g. μ - 2σ and μ + 2σ = gives the probability of falling within 2 standard
deviations of the mean for 95%
€5,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
azraaa

Maak kennis met de verkoper

Seller avatar
azraaa Universiteit van Amsterdam
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1
Lid sinds
2 jaar
Aantal volgers
0
Documenten
34
Laatst verkocht
10 maanden geleden
<3

De prijs van de samenvattingen hangt samen met het leerjaar: hoe hoger het leerjaar, hoe hoger de prijs. Dit i.v.m. de moeilijkheidsgraad van de stof :) Hopelijk heb je wat aan de samenvatting en helpt het je schoolcarrière Veel succes!

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen