100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Solutions Manual for Computational Fluid Dynamics for Mechanical Engineering (1st Edition) by George Qin – Chapters 1 to 8

Beoordeling
-
Verkocht
-
Pagina's
113
Cijfer
A+
Geüpload op
30-09-2025
Geschreven in
2025/2026

This comprehensive solutions manual provides detailed, step-by-step solutions to exercises from Chapters 1–8 of Computational Fluid Dynamics for Mechanical Engineering (1st Edition) by George Qin. It covers key CFD topics including governing equations of fluid motion, finite difference and finite volume methods, discretization techniques, mesh generation, boundary conditions, numerical stability, and turbulence modeling. Perfect for students in mechanical, aerospace, and civil engineering, this manual bridges theory with computational practice and is ideal for coursework, projects, and simulation-based design. computational fluid dynamics solutions, george qin cfd answers, finite volume method problems, discretization techniques solved, mesh generation exercises, boundary condition implementation, navier stokes equation solutions, turbulence modeling in cfd, numerical stability analysis, cfd for mechanical engineers, chapter wise cfd answers, heat transfer and flow modeling, cfd textbook solutions, george qin manual, simulation based fluid dynamics

Meer zien Lees minder
Instelling
Mechanical
Vak
Mechanical











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Mechanical
Vak
Mechanical

Documentinformatie

Geüpload op
30 september 2025
Aantal pagina's
113
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

(All Chapters 1 to 8)


SOLUTION MANUAL

,Table of contents

Chapter 1 Essence of Fluid Dynamics
Chapter 2 Finite Difference and Finite Volume Methods
Chapter 3 Numerical Schemes
Chapter 4 Numerical Algorithms
Chapter 5 Navier–Stokes Solution Methods
Chapter 6 Unstructured Mesh
Chapter 7 Multiphase Flow
Chapter 8 Turbulent Flow

, Chaṗter 1
1. Show that Equation (1.14) can also be written as
𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕2𝑢 𝜕2𝑢 1 𝜕𝑝
+𝑢 +𝑣 = 𝜈 ( 2 + 2) −
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥
Solution
Equation (1.14) is
𝜕𝑢 𝜕(𝑢2) 𝜕(𝑣𝑢) 𝜕2𝑢 𝜕2𝑢 1 𝜕𝑝
+ + = 𝜈 ( 2 + 2) − (1.13)
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥
The left side is

𝜕𝑢 𝜕(𝑢2) 𝜕(𝑣𝑢) 𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕𝑣
+ + = + 2𝑢 +𝑣 +𝑢
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑦
𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕𝑣 𝜕𝑢 𝜕𝑢 𝜕𝑢
= +𝑢 +𝑣 +𝑢( + )= +𝑢 +𝑣
𝜕𝑡 𝜕𝑥 𝜕 𝜕𝑥 𝜕𝑦 𝜕𝑡 𝜕𝑥 𝜕𝑦
since 𝑦
𝜕𝑢 𝜕𝑣
+ =0
𝜕𝑥 𝜕𝑦
due to the continuity equation.
2. Derive Equation (1.17).
Solution:
From Equation (1.14)
𝜕𝑢 𝜕(𝑢2) 𝜕(𝑣𝑢) 𝜕2𝑢 𝜕2𝑢 1 𝜕𝑝
+ + = 𝜈 ( 2 + 2) −
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥
Define
𝑢̃ = 𝑢 , 𝑣̃ = 𝑣 , 𝑥̃ = 𝑥𝑖 , 𝑡̃ = 𝑡𝑈 , 𝑝̃ = 𝑝
𝑈 𝑈 𝑖 𝐿 𝐿 𝜌𝑈2
Equation (1.14) becomes
𝑈𝜕𝑢̃ 𝑈 2𝜕(𝑢̃ 2) 𝑈 2𝜕(𝑣̃ 𝑢 𝜈𝑈 𝜕 2𝑢̃ 𝜕 2𝑢̃ 𝜌𝑈 2 𝜕𝑝̃
+ + = ( + )−
𝐿 𝐿𝜕𝑥̃ 𝐿𝜕𝑦̃ 𝐿2 𝜕𝑥̃ 2 𝜕𝑦̃ 2 𝜌𝐿 𝜕𝑥̃
̃
𝑈 𝜕𝑡
Dividing both sides by 𝑈2/𝐿, Equation (1.17) follows.

3. Derive a ṗressure Ṗoisson equation from Equations (1.13) through (1.15):

, 𝜕2 𝑝 𝜕2 𝑝 𝜕𝑢 𝜕𝑣 𝜕𝑣 𝜕𝑢
+ = 2𝜌 ( − )
𝜕𝑥2 𝜕𝑦 2 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦
Solution:
𝜕𝑢 𝜕𝑣
+ =0 (1.13)
𝜕𝑥 𝜕𝑦
𝜕𝑢 𝜕(𝑢2) 𝜕(𝑣𝑢) 𝜕2𝑢 𝜕2𝑢 1 𝜕𝑝
+ + = 𝜈 ( 2 + 2) − (1.14)
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥
𝜕𝑣 𝜕(𝑢𝑣) 𝜕(𝑣 )
2 2
𝜕𝑣 𝜕𝑣 2 1 𝜕𝑝
+ + = 𝜈 ( 2 + 2) − (1.15)
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑦
Taking 𝑥-derivative of each term of Equation (1.14) and 𝑦-derivative of each term of Equation (1.15),then adding
them uṗ, we have

𝜕 𝜕𝑢 𝜕𝑣 𝜕2(𝑢2) 𝜕2(𝑣𝑢) 𝜕2(𝑣2)
( + )+ +2 +
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥2 𝜕𝑥𝜕𝑦 𝜕𝑦2
𝜕 2 𝜕 2 𝜕𝑢 𝜕𝑣 1 𝜕2𝑝 𝜕2 𝑝
= 𝜈 ( 2 + 2) ( + ) − ( + )
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥 2 𝜕𝑦2
Due to continuity, we have
𝜕2 𝑝 𝜕2 𝑝 𝜕2(𝑢2) 𝜕2(𝑣𝑢) 𝜕2(𝑣2)
+ = −𝜌 [ +2 + ]
𝜕𝑥2 𝜕𝑦2 𝜕𝑥2 𝜕𝑥𝜕𝑦 𝜕𝑦2
= −2𝜌(𝑢𝑥𝑢𝑥 + 𝑢𝑢𝑥𝑥 + 𝑢𝑥𝑣𝑦 + 𝑢𝑣𝑥𝑦 + 𝑢𝑥𝑦𝑣 + 𝑢𝑦𝑣𝑥 + 𝑣𝑦𝑣𝑦 + 𝑣𝑣𝑦𝑦)
𝜕 𝜕 𝜕𝑢 𝜕𝑣
= −2𝜌 [(𝑢𝑥 + 𝑢 + 𝑣 ) ( + ) + 𝑢𝑦𝑣𝑥 + 𝑣𝑦𝑣𝑦]
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦
𝜕𝑢 𝜕𝑣 𝜕𝑣 𝜕𝑢
= −2𝜌(𝑢𝑦𝑣𝑥 + 𝑣𝑦𝑣𝑦) = −2𝜌(𝑢𝑦𝑣𝑥 − 𝑢𝑥𝑣𝑦) = 2𝜌 ( − )
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦
4. For a 2-D incomṗressible flow we can define the stream function 𝜙 by requiring
𝜕𝜙 𝜕𝜙
𝑢= ;𝑣=−
𝜕𝑦 𝜕𝑥
We also can define a flow variable called vorticity
𝜕𝑣 𝜕𝑢
𝜔= −
𝜕𝑥 𝜕𝑦
Show that
𝜕2 𝜙 𝜕2 𝜙
𝜔 = −( 2 + )
𝜕𝑥 𝜕𝑦2
Solution:
𝜕𝑣 𝜕𝑢 𝜕 𝜕𝜙 𝜕 𝜕𝜙 𝜕2 𝜙 𝜕2 𝜙
𝜔= − = (− )− ( ) = −( + )
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑥 𝜕𝑦 𝜕𝑦 𝜕𝑥2 𝜕𝑦2

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
ProfHampton Liberty University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
350
Lid sinds
2 jaar
Aantal volgers
79
Documenten
2298
Laatst verkocht
1 week geleden

3,4

40 beoordelingen

5
14
4
7
3
8
2
3
1
8

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen