100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Solution Manual For Mathematical Proofs: A Transition to Advanced Mathematics 4th Edition by Gary Chartrand, Albert Polimeni, Ping Zhang

Beoordeling
-
Verkocht
-
Pagina's
269
Cijfer
A+
Geüpload op
06-09-2025
Geschreven in
2025/2026

Solution Manual For Mathematical Proofs: A Transition to Advanced Mathematics 4th Edition by Gary Chartrand, Albert Polimeni, Ping Zhang

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Vak

Documentinformatie

Geüpload op
6 september 2025
Aantal pagina's
269
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Albert D. Polimeni, Gary
Chartrand, Ping Zhang - Solution
Manual for Mathematical Proofs
A Transition to
Advanced Mathematics

, lOMoARcPSD|58847208




Mathematical Proofs
A Transition to
Advanced Mathematics
Fourth Edition




Gary Chartrand
Western Michigan University



Albert D. Polimeni
State University of New York at Fredonia



Ping Zhang
Western Michigan University

, lOMoARcPSD|58847208




Table of Contents
0. Communicating Mathematics
0.1 Learning Mathematics
0.2 What Others Have Said About Writing
0.3 Mathematical Writing
0.4 Using Symbols
0.5 Writing Mathematical Expressions
0.6 Common Words and Phrases in Mathematics
0.7 Some Closing Comments About Writing

1. Sets
1.1 Describing a Set
1.2 Subsets
1.3 Set Operations
1.4 Indexed Collections of Sets
1.5 Partitions of Sets
1.6 Cartesian Products of Sets Exercises for Chapter 1

2. Logic
2.1 Statements
2.2 Negations
2.3 Disjunctions and Conjunctions
2.4 Implications
2.5 More on Implications
2.6 Biconditionals
2.7 Tautologies and Contradictions
2.8 Logical Equivalence
2.9 Some Fundamental Properties of Logical Equivalence
2.10 Quantified Statements
2.11 Characterizations Exercises for Chapter 2

3. Direct Proof and Proof by Contrapositive
3.1 Trivial and Vacuous Proofs
3.2 Direct Proofs
3.3 Proof by Contrapositive
3.4 Proof by Cases
3.5 Proof Evaluations
Exercises for Chapter 3

4. More on Direct Proof and Proof by Contrapositive
4.1 Proofs Involving Divisibility of Integers
4.2 Proofs Involving Congruence of Integers
4.3 Proofs Involving Real Numbers
4.4 Proofs Involving Sets
4.5 Fundamental Properties of Set Operations
4.6 Proofs Involving Cartesian Products of Sets Exercises for Chapter 4

5. Existence and Proof by Contradiction
5.1 Counterexamples
5.2 Proof by Contradiction
iv


5.3 A Review of Three Proof Techniques

, lOMoARcPSD|58847208




5.4 Existence Proofs
5.5 Disproving Existence Statements Exercises for Chapter 5

6. Mathematical Induction
6.1 The Principle of Mathematical Induction
6.2 A More General Principle of Mathematical Induction
6.3 The Strong Principle of Mathematical Induction
6.4 Proof by Minimum Counterexample Exercises for Chapter 6

7. Reviewing Proof Techniques
7.1 Reviewing Direct Proof and Proof by Contrapositive
7.2 Reviewing Proof by Contradiction and Existence Proofs
7.3 Reviewing Induction Proofs
7.4 Reviewing Evaluations of Proposed Proofs Exercises for Chapter 7

8. Prove or Disprove
8.1 Conjectures in Mathematics
8.2 Revisiting Quantified Statements
8.3 Testing Statements Exercises for Chapter 8

9. Equivalence Relations
9.1 Relations
9.2 Properties of Relations
9.3 Equivalence Relations
9.4 Properties of Equivalence Classes
9.5 Congruence Modulo n
9.6 The Integers Modulo n Exercises for Chapter 9

10. Functions
10.1 The Definition of Function
10.2 One-to-one and Onto Functions
10.3 Bijective Functions
10.4 Composition of Functions
10.5 Inverse Functions
Exercises for Chapter 10

11. Cardinalities of Sets
11.1 Numerically Equivalent Sets
11.2 Denumerable Sets
11.3 Uncountable Sets
11.4 Comparing Cardinalities of Sets
11.5 The Schroder-Bernstein Theorem¨ Exercises for Chapter 11

12. Proofs in Number Theory
12.1 Divisibility Properties of Integers
12.2 The Division Algorithm
12.3 Greatest Common Divisors
v


12.4 The Euclidean Algorithm
12.5 Relatively Prime Integers
12.6 The Fundamental Theorem of Arithmetic
12.7 Concepts Involving Sums of Divisors Exercises for Chapter 12

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
TestsBanks University of Greenwich (London)
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
868
Lid sinds
4 jaar
Aantal volgers
181
Documenten
2327
Laatst verkocht
3 dagen geleden
Accounting, Finance, Statistics, Computer Science, Nursing, Chemistry, Biology & More — A+ Test Banks, Study Guides & Solutions

Welcome to TestsBanks! Best Educational Resources for Student I offer test banks, study guides, and solution manuals for all subjects — including specialized test banks and solution manuals for business books. My materials have already supported countless students in achieving higher grades, and I want them to be the guide that makes your academic journey easier too. I’m passionate, approachable, and always focused on quality — because I believe every student deserves the chance to excel. THANKS ALOT!!

Lees meer Lees minder
4,1

132 beoordelingen

5
79
4
19
3
13
2
6
1
15

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen