100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

COS4861 Assignment 3 (COMPLETE ANSWERS) 2025 - DUE 10 September 2025; 100% correct solutions and explanations.

Beoordeling
-
Verkocht
-
Pagina's
19
Cijfer
A+
Geüpload op
04-09-2025
Geschreven in
2025/2026

COS4861 Assignment 3 (COMPLETE ANSWERS) 2025 - DUE 10 September 2025; 100% correct solutions and explanations.COS Assignment 3 - [65 points] ## Working towards encoding systems in NLP. —------------------------------------------------------------------------------------------------------------------------ Due date: 10 September 2025 Year: 2025 Author: Dr Dongmo Cyrille, Mr Thapelo Sindane Contact: or —------------------------------------------------------------------------------------------------------------------------ You will learn how to: - define various encoding techniques (N-grams, ), and smoothing algorithms - build tokenizers, and N-grams models, Note 1: This assignment is designed to make you understand the fundamentals behind corpus-based Natural Language Processing (NLP) and various techniques applied for preprocessing, analysing, and generating insights from text such as word would, tokenization, and creating encoding systems. This is in no way a definitive list of examples, but the basic components you need to get started. Introduction Use the below corpus to answer the questions that follow. The assignment is divided into three section: - Theory based question - Critical thinking and understanding - And application / code [should be in python] The corpus “” When data are noisy, it’s our job as data scientists to listen for signals so we can relay it to someone who can decide how to act. To amp up how loudly hidden signals speak over the noise of big and/or volatile data, we can deploy smoothing algorithms, which though traditionally used in time-series analyses, also come into their own when applied on other sequential data. Smoothing algorithms are either global or local because they take data and filter out noise across the entire, global series, or over a smaller, local series by summarizing a local or global domain of Y, resulting in an estimation of the underlying data called a smooth. The specific smoother you use depends on your analysis’ goal and data quirks, because as we’ll see below, there are trade-offs to consider. Below are a few options, along with their intuition, limitations, and formula so you can rapidly evaluate when and why to use one over the other. “” Question 1 [12 points] - Theory 1) What is a corpus ? and how does it differ from other data types ? (2) 2) What is the technical term for splitting a corpus into different linguistic units such as paragraphs, sentences, and words in NLP (1) 3) Define N-grams and provide references from peer-reviewed articles (2) 4) Describe the problem of data sparseness with regards to

Meer zien Lees minder
Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
4 september 2025
Aantal pagina's
19
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

, COS4861 Assignment 3 (COMPLETE ANSWERS) 2025
- DUE 10 September 2025; 100% correct solutions and
explanations.
QUESTION 1

1) What is a corpus, and how does it differ from other data types?

A corpus is a large, structured, and electronically stored collection of authentic
linguistic data, usually in the form of written texts or transcribed speech, that is
compiled for the purpose of linguistic analysis or natural language processing
(NLP). It is designed to represent language use as naturally as possible and
provides researchers with empirical evidence of how language is used in real
contexts. Corpora may be general (covering many topics and genres) or specialized
(focusing on a particular domain, register, or variety of language).

A corpus differs from other data types in several ways:

 Authenticity: Unlike artificial or constructed examples, corpora consist of
naturally occurring language samples.
 Structure: Corpora are systematically organized, annotated, and often
tagged with linguistic metadata (e.g., part-of-speech tags, syntactic
structures).
 Size: Corpora are usually large-scale, making them more representative of
language patterns than small anecdotal examples or intuition-based data.
 Machine-readability: They are stored in electronic form and are accessible
for computational analysis using NLP tools.
 Comparability: Unlike general datasets, corpora are specifically designed to
allow linguistic comparison across genres, registers, dialects, or time
periods.

Thus, while general data types may include numbers, images, or arbitrary text
collections, a corpus is unique in being a linguistically informed dataset created for
systematic study of language.



2) What is the technical term for splitting a corpus into different linguistic
units such as paragraphs, sentences, and words in NLP?

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
MasterVincent University of South Africa (Unisa)
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
2569
Lid sinds
2 jaar
Aantal volgers
452
Documenten
1529
Laatst verkocht
2 dagen geleden
MasterVincent

On this page, you find all documents, package deals, and flashcards offered by seller MasterVincent.

4,1

379 beoordelingen

5
206
4
69
3
51
2
24
1
29

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen