100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Advanced Placement Calculus AB Cram Sheet with Formulas and Theorems

Beoordeling
-
Verkocht
-
Pagina's
5
Geüpload op
08-07-2025
Geschreven in
2024/2025

Comprehensive AP Calculus AB cram sheet with all the essential formulas, theorems, and rules in one easy-to-read page. Perfect for quick review and last-minute studying before tests or the AP exam. Includes derivatives, integrals, limits, related rates, optimization, the Fundamental Theorem of Calculus, Mean Value Theorem, L’Hôpital’s Rule, and more. Designed for clarity and speed, this cheat sheet is ideal for memorization, problem-solving reference, or condensed exam prep. A must-have resource for any AP Calc student looking to boost confidence and performance.

Meer zien Lees minder
Instelling
Junior / 11th Grade
Vak
Advanced Placement Calculus AB









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Junior / 11th grade
Vak
Advanced Placement Calculus AB
School jaar
3

Documentinformatie

Geüpload op
8 juli 2025
Aantal pagina's
5
Geschreven in
2024/2025
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

ABCramSheet.nb 1




AP Calculus AB Cram Sheet
Definition of the Derivative Function:

f +xh/  f +x/
f ' (x) = limh‘0 cccccccccccccccc
h
cccccccccccccc

Definition of Derivative at a Point:

f +ah/ f +a/
f ' (a) = limh‘0 cccccccccccccccc
ccccccccccccc (note: the first definition results in a function, the second definition results in a number. Also
f +ah/ f +a/
h
note that the difference quotient, cccccccccccccccc h
ccccccccccccc , by itself, represents the average rate of change of f from x = a to x = a + h)

Interpretations of the Derivative: f ' (a) represents the instantaneous rate of change of f at x = a, the slope of the tangent
line to the graph of f at x = a, and the slope of the curve at x = a.

Derivative Formulas: (note:a and k are constants)

d
cccc
dx
cc +k/ 0

d
cccc
dx
cc (k·f(x))= k·f ' (x)

d
cc + f +x//n
cccc
dx
n+ f +x//n1  f ' +x/

d
cccc
dx
cc [f(x) ± g(x)] = f ' (x) ± g ' (x)

d
cccc
dx
cc [f(x)·g(x)] = f(x)·g ' (x) + g(x) · f ' (x)

d
cc , ccccf c+x/
cccc
dx g+x/
ccccc 0 g+x/ f ' +x/  f +x/g ' +x/
+g+x//2
cccccccccccccccccccccccccccccccc
ccccccccccccccccc

d
cccc
dx
cc sin(f(x)) = cos (f(x)) ·f ' (x)

d
cccc
dx
cc cos(f(x)) = -sin(f(x))·f ' (x)

d
cc tan(f(x)) = sec2 + f +x// º f ' +x/
cccc
dx

d
cccc
dx
ccccc º f ' +x/
cc ln(f(x)) = ccccf c1+x/

d
cc e f +x/
cccc
dx
e f +x/ º f ' +x/

d
cc a f +x/
cccc
dx
a f +x/ º ln a º f ' +x/

cc sin1  f +x/ f ' +x/
r

2
1+ f +x//
d
cccc
dx
cccccccccccccccc
cccccccc
cccc


cc cos1  f +x/ f ' +x/
r

2
1+ f +x//
d
cccc
dx
 cccccccccccccccc
cccccccc
cccc

, ABCramSheet.nb 2


d
cc tan1  f +x/
cccc
dx
f ' +x/
1+ f +x//2
cccccccccccccccc
cccccc

d
cc + f 1 +x// at x
cccc
dx
f +a/ equals cccccccc
1
ccccc at x
f '+x/
a

L'Hopitals's Rule:

f +x/ f ' +x/
g ' +x/
ˆ
If limx‘a cccc
cccccc
g+x/
cccc00 or cccc
ˆ
cc and if limx‘a cccccccc
ccccc exists then

f +x/ f ' +x/
g ' +x/
limx‘a cccc
cccccc
g+x/
limx‘a cccccccc
ccccc

ˆ f +x/
The same rule applies if you get an indeterminate form ( cccc00 or cccc
ˆ
cc ) for limx‘ˆ cccc
cccccc as well.
g+x/


Slope; Critical Points: Any c in the domain of f such that either f ' (c) = 0 or f ' (c) is undefined is called a critical point or
critical value of f.

Tangents and Normals
The equation of the tangent line to the curve y = f(x) at x = a is

y - f(a) = f ' (a) (x - a)

The tangent line to a graph can be used to approximate a function value at points very near the point of tangency. This is
known as local linear approximations. Make sure you use ž instead of = when you approximate a function.

The equation of the line normal(perpendicular) to the curve y = f(x) at x = a is


f ' +a/
1
y - f(a) =  cccccccc
ccccc +x  a/


Increasing and Decreasing Functions A function y = f(x) is said to be increasing/decreasing on an interval if its deriva-
tive is positive/negative on the interval.

Maximum, Minimum, and Inflection Points
The curve y = f(x) has a local (relative) minimum at a point where x = c if the first derivative changes signs from negative
to positive at c.

The curve y = f(x) has a local maximum at a point where x = c if the first deivative changes signs from positive to negative.

The curve y = f(x) is said to be concave upward on an interval if the second derivative is positive on that interval. Note that
this would mean that the first derivative is increasing on that interval.

The curve y = f(x) is siad to be concave downward on an interval if the second derivative is negative on that interval. Note
that this would mean that the first derivative is decreasing on that interval.

The point where the concavity of y = f(x) changes is called a point of inflection.

The curve y = f(x) has a global (absolute) minimum value at x = c on [a, b] if f(c) is less than all y values on the interval.
€13,64
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
William77

Maak kennis met de verkoper

Seller avatar
William77
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
3
Lid sinds
6 maanden
Aantal volgers
0
Documenten
4
Laatst verkocht
3 maanden geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen