100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary ES 183 Revision Notes

Beoordeling
-
Verkocht
-
Pagina's
30
Geüpload op
06-07-2025
Geschreven in
2023/2024

Engineering Mathematics Revision Notes,for effective exam prep. An Essential Study resource just for YOU!!

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Onbekend
Vak

Documentinformatie

Geüpload op
6 juli 2025
Aantal pagina's
30
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Engineering Mathematics Revision Notes

A function is a rule which operates on an input and produces a single output.
If the rule produces multiple outputs, then it is referred to as a mapping.
Input of a function is called the argument.
Functions can be one-to-one or many-to-one.
Set of x values used as the input is called the domain.
Set of y values produced as a result of the domain is called the range of the function.

Examples
y= mx + c (one-to-one mapping)
domain: -∞<x<∞ range: -∞<y<∞


y= kx2 (many-to-one mapping)
domain: -∞<x<∞ range: 0<y<∞


y= sin x (many-to-one mapping)
domain: -∞<x<∞ range: -1<y<1


Even & Odd Functions
A function is even if the following equation is satisfied. The graph is
symmetrical about the y axis.
A function is odd if it follows this equation. Graph will possess
rotational symmetry about the origin.

Periodic Functions
This is any function that has a definite pattern repeated at regular intervals.
Each complete pattern is known as a cycle. The interval over which the repetition takes
place is the period. E.g. sin wave.


Inverse Functions f-1(x)
This is a function that reverses the original defined rule. The input of y will produce the
output x.
*The inverse function is a reflection of the function in the line y = x.
Only one-to-one functions have an inverse.

,Conic sections are equations of planetary or mechanical orbits (circle, ellipse, hyperbola).
An asymptote is a straight line which is tangent to a curve at infinity. The graph never
touches this line.
Oblique asymptote is where you have a diagonal asymptote and they cross.

Cartesian geometry
1.Straight Line
- A large number of engineering relationships can be
described by a linear relationship/straight line.
- (x,y)
- c is the constant/y-intercept.
- m is the gradient of the graph.


2.Circle
- Not a function as it is many-to-many.
- Equation is represented by this if the
centre is at the origin.
- Most of the time the centre is shifted
out of the origin, so the equation takes
this form.

3.Ellipse
- Has intercepts at x = + a and y = + b.
- The general equation takes the form:




4.Hyperbola
- No y intercept as y = + -b2 so there’s no real solutions.
- This is the equation for a horizontal hyperbola with vertex
at the origin.
- x intercepts are (-a,0) and (a,0).

*Note how the general equations for a circle, ellipse, and hyperbola are all linked.

Example
What type of graph is 4x2 – 16x + 9y2 + 18y – 11 = 0
Complete the square:
2 2
4 [(x - 4x + 4) – 4] + 9 [(y + 2y + 1) – 1] – 11 = 0
2 2
4(x-2) – 16 + 9(y+1) – 9 – 11 = 0
2 2
4(x-2) + 9(y-1) = 36
2 2
4(x-2) + 9(y-1) = 1
36 36
2 2
(x-2) + (y-1) = 1
9 4
2 2
(x-2) + (y-1) = 1 -> ELLIPSE
2 2
3 2

, Asymptotes
Not all curves have asymptotes but some of the simplest ones belong to rational functions.




Sketching rational functions
E.g. f(x) = P(x) = (5-x2)
Q(x) (x+3)
Asymptotes
Vertical:
Q(x) = 0 -> x + 3 = 0 x = -3

Horizontal:
You will have a horizontal asymptote if the degree of the numerator = degree of the
denominator.
Degree of num is less than degree of the denominator. y = 0
Degrees are the same, take the coefficient in front of x2 and divide top by the bottom. E.g.
¾.
Degree of numerator is greater than the bottom -> no horizontal asymptote.

Oblique
These occur when degree of numerator is 1 larger than the denominator.
The oblique asymptote is the result of algebraic long division (not remainder).
->y = -x + 3
The remainder of the long division can be ignored because this will tend to 0 as x becomes
large.

Polar Coordinates
Converting from cartesian to polar: Converting from polar to cartesian:
R = x2 + y2 x = r cos
 = tan-1(b/a) y = r sin



Example
Convert r2 = 1/sincos from polar to cartesian form.
Eliminate sin and cos using the above equations:
2 2
r = 1 = r
y/r x x/r xy
1 = 1/yx
y=1
x

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
anyiamgeorge19 Arizona State University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
60
Lid sinds
2 jaar
Aantal volgers
16
Documenten
7001
Laatst verkocht
1 maand geleden
Scholarshub

Scholarshub – Smarter Study, Better Grades! Tired of endless searching for quality study materials? ScholarsHub got you covered! We provide top-notch summaries, study guides, class notes, essays, MCQs, case studies, and practice resources designed to help you study smarter, not harder. Whether you’re prepping for an exam, writing a paper, or simply staying ahead, our resources make learning easier and more effective. No stress, just success! A big thank you goes to the many students from institutions and universities across the U.S. who have crafted and contributed these essential study materials. Their hard work makes this store possible. If you have any concerns about how your materials are being used on ScholarsHub, please don’t hesitate to reach out—we’d be glad to discuss and resolve the matter. Enjoyed our materials? Drop a review to let us know how we’re helping you! And don’t forget to spread the word to friends, family, and classmates—because great study resources are meant to be shared. Wishing y'all success in all your academic pursuits! ✌️

Lees meer Lees minder
3,4

5 beoordelingen

5
2
4
0
3
2
2
0
1
1

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen