100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

ECS4863 Assignment 1 Memo | Due 16 May 2025

Beoordeling
-
Verkocht
-
Pagina's
25
Cijfer
A+
Geüpload op
15-05-2025
Geschreven in
2024/2025

ECS4863 Assignment 1 Memo | Due 16 May 2025

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
15 mei 2025
Aantal pagina's
25
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

ECS4863
Assignment 1
Memo | Due 16
May 2025
NO PLAGIARISM




[DATE]
[COMPANY NAME]
[Company address]

,Exam (elaborations)
ECS4863 Assignment 1 Memo | Due 16 May
2025
Course

 Advanced Econometrics (ECS4863)
 Institution
 University Of South Africa (Unisa)
 Book
 Introductory Econometrics

ECS4863 Assignment 1 Memo | Due 16 May 2025. All questions fully
answered.



Question 1: (15 marks) 1.1 Explain the concept of omitted variable bias and
distinguish between positive and negative bias ( 4)

Question 1.1 (15 marks)
Explain the concept of omitted variable bias and distinguish between positive and negative
bias.

Omitted Variable Bias (OVB):
Omitted variable bias occurs in statistical analysis, particularly in regression models, when a
relevant explanatory variable is left out of the model. This omitted variable must both influence
the dependent variable and be correlated with one or more of the included independent variables.
When this happens, the estimated coefficients of the included variables become biased and
inconsistent, meaning they do not reflect the true relationship between the independent and
dependent variables.

The bias occurs because the effect of the omitted variable is wrongly attributed to the included
variables, leading to inaccurate conclusions and policy implications.

Example:
Suppose we want to study the effect of education (X) on income (Y), but we omit the variable
"ability" (Z), which affects both education and income. If individuals with higher ability tend to
get more education and also earn more, omitting ability will bias the estimate of the return to
education.



Positive vs. Negative Bias:

,  Positive Bias:
This occurs when the omitted variable is positively correlated with both the dependent
variable and the included independent variable, or negatively correlated with both. This
leads to an overestimation of the effect of the included variable.

Example: If ability is positively correlated with education and income, the regression will
attribute some of ability’s effect to education, making it look like education increases
income more than it really does.

 Negative Bias:
This occurs when the omitted variable is positively correlated with one variable and
negatively correlated with the other. This leads to an underestimation (or possibly a
reversal) of the true effect of the included variable.

Example: If stress level is negatively correlated with income (higher income = less stress)
and positively correlated with working hours, omitting stress could understate the effect
of working hours on income.



In summary:
Omitted variable bias leads to incorrect estimates in regression analysis. It is positive if the bias
inflates the estimated effect and negative if it deflates it. The direction of the bias depends on the
relationships between the omitted variable, the included variables, and the dependent variable.




1.2 Explain in your own words how you test serial correlation with strictly
exogenous variables (3)

Question 1.2 (15 marks)
Explain in your own words how you test serial correlation with strictly exogenous
variables.

To test for serial correlation (also known as autocorrelation) in a regression model with strictly
exogenous variables, we are checking whether the error terms (residuals) in the regression are
correlated with each other over time. Serial correlation violates one of the key assumptions of the
classical linear regression model and can lead to inefficient estimates and incorrect standard
errors.

Strict exogeneity means that the independent variables (X) are not correlated with the error term
(u) in any time period—past, present, or future. This assumption allows us to use simple tests for
serial correlation, like the Durbin-Watson (DW) test, because the X variables are treated as
fixed and uncorrelated with the error term.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
lakeli2018 University of South Africa (Unisa)
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
103
Lid sinds
1 jaar
Aantal volgers
53
Documenten
496
Laatst verkocht
1 maand geleden

3,3

14 beoordelingen

5
5
4
2
3
3
2
0
1
4

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen