100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary MRM2: Statistical Concepts and Analyses - A Briefing

Beoordeling
-
Verkocht
-
Pagina's
6
Geüpload op
27-03-2025
Geschreven in
2024/2025

This briefing document summarizes key statistical concepts and analytical techniques essential for quantitative research. It covers fundamental principles such as hypothesis testing, p-values, measurement scales, variance, and degrees of freedom. The document also explores various analytical methods, including ANOVA for comparing group means, regression analysis for modeling relationships between variables, logistic regression for predicting binary outcomes, factor analysis for data reduction, and reliability analysis for assessing scale consistency. Practical examples illustrate these concepts, demonstrating their application in analyzing data and interpreting results in social science research.

Meer zien Lees minder
Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
27 maart 2025
Aantal pagina's
6
Geschreven in
2024/2025
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Briefing Document: Statistical Concepts and Analyses from
Provided Sources

This briefing document summarizes the main themes and important ideas
presented across the provided excerpts from "MRM2.pdf" and various "PC
Lab" assignments and answer keys. The document covers fundamental
statistical concepts, different types of analyses (ANOVA, Regression,
Logistic Regression, Factor Analysis, Reliability Analysis), and their
interpretation, often with practical examples from the lab assignments.

I. Fundamental Statistical Concepts

 P-value and Hypothesis Testing: A cutoff p-value of .05 (5%) is
used to determine statistical significance. "a p- value<.05 means we
can reject H0." (MRM2.pdf - Week 1).

 Null Hypothesis (H₀): Typically states no effect or no difference.
Examples include: "H₀: Cause has nothing to do with effect"
(MRM2.pdf - Conceptual model) and in ANOVA, "H0: μ1 = μ2 = ⋯ =
μ𝑖" ("There is no difference in mean across the different categories" -
MRM2.pdf - ANOVA Table). In regression, the null hypothesis for
individual PVs is often "H0: βpv = 0" (PC lab 5 - Open Book
Assignment - answers-1 (1).pdf).

 Alternative Hypothesis (H₁ or HA): States there is an effect or a
difference. For example, in ANOVA, "𝐻1: 𝜇 ≠ 𝜇𝑗" ("There is a
difference in the means." - MRM2.pdf - ANOVA Table).

 Measurement Scales: Variables can be categorical (nominal,
ordinal) or quantitative (discrete, interval, ratio). Ordinal scales like
Likert scales are sometimes treated as pseudo-interval in social
sciences (MRM2.pdf - Conceptual model).

 Comparing Means and Standard Deviations: When comparing
groups, means indicate central tendency, and standard deviations
measure the spread of scores within each group. "Larger differences
in means suggest potential variability in the outcome variable...
based on the predictor variable..." (MRM2.pdf - How to Interpret).
Smaller standard deviations indicate more consistency within a
group.

 Variance: Measures the spread of data. ANOVA tests for differences
in means by analyzing variance. Levene's test checks for the
equality of variances assumption in ANOVA. A p ≤ 0.05 in Levene's
test indicates unequal variances, violating the ANOVA assumption
(MRM2.pdf - difference in variances).

,  Degrees of Freedom (df): Reflect the number of independent
pieces of information available to estimate a parameter (MRM2.pdf -
ANOVA Table).

II. Analysis of Variance (ANOVA)

 Purpose: To investigate if the group means of an outcome variable
differ across different categories of a predictor variable(s).

 ANOVA Table: Summarizes the sources of variance (Between
Groups/Model, Within Groups/Residual, Total), Sum of Squares (SS),
Degrees of Freedom (df), Mean Square (MS), F-ratio, and p-value
(MRM2.pdf - ANOVA Table).

 F-ratio: "𝐹(𝑟𝑎𝑡𝑖𝑜) = 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡 / 𝑢𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡 = 𝑏𝑒𝑡𝑤𝑒𝑒𝑛
𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡 / 𝑤𝑖𝑡ℎ𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡 = ( 𝑆𝑆𝑀𝑜𝑑𝑒 / 𝑑𝑓𝑀𝑜𝑑𝑒 ) / (
𝑆𝑆𝑅𝑒𝑠𝑖𝑑𝑢𝑎 / 𝑑𝑓𝑅𝑒𝑠𝑖𝑑𝑢𝑎 ) = 𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑀𝑜𝑑𝑒 / 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑅𝑒𝑠𝑖𝑑𝑢𝑎"
(MRM2.pdf - ANOVA Table). A significant F-test (p < 0.05) indicates
that at least one group mean is different.

 Post-Hoc Tests: Used after a significant ANOVA to determine which
specific group means differ from each other. Examples include
Bonferroni, Tukey, and LSD (MRM2.pdf - Post-Hoc Tests). These are
controlled to reduce Type I error. "In this case... you will see that
there is a difference between a) MBO and HBO (which is significant,
p-value of .026...)" (PC lab 1 - Open Book Assignment - answers-
1.pdf).

 Effect Size (Partial Eta Squared - 𝜂²): Represents the proportion
of variance in the outcome variable explained by each predictor
variable or interaction effect. Thresholds: Small = 0.01, Medium =
0.06, Large = 0.14 (MRM2.pdf - Effect Size in Factorial ANOVA).

 Factorial ANOVA: Examines the effects of two or more categorical
predictor variables (factors) and their interaction on a quantitative
outcome variable (MRM2.pdf - Factorial ANOVA). A significant
interaction indicates that the effect of one PV on the OV depends on
the level of the other PV. Interaction plots with non-parallel lines
visually suggest moderation (MRM2.pdf - Interpreting Moderation in
SPSS Outputs).

III. Regression Analysis

 Purpose: To model the relationship between one or more predictor
variables (PVs) and a quantitative outcome variable (OV).

 Simple Regression: One PV.
€4,97
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
Justasudent

Maak kennis met de verkoper

Seller avatar
Justasudent Universiteit van Amsterdam
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
8 maanden
Aantal volgers
0
Documenten
1
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen