100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

QNT 2020 extremely detailed notes with practice examples weeks 1-5

Beoordeling
-
Verkocht
-
Pagina's
8
Geüpload op
26-02-2025
Geschreven in
2024/2025

Detailed notes form weeks 1-5

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
26 februari 2025
Aantal pagina's
8
Geschreven in
2024/2025
Type
College aantekeningen
Docent(en)
Golbarg roghani araghi
Bevat
Weeks 1-5

Onderwerpen

Voorbeeld van de inhoud

3 types of analytics
1)​ descriptive- known data- getting a pic of he data so you can find a pattern which will help
you to the predictive data
2)​ predicitive- unknown data- you try to predict the future eight he data
3)​ prescriptive - decision model- helps us to take action

a multi class queuing model with abandonments (the chart with the vendalators)
-​ there are K allocation eligible classes of patient
-​ pk 1= survival probability with ventilator
-​ Pk 0= probability of staying alive after t periods while waiting for a vendaltor
-​ LOU K- vendetta or length of use
-​ VK (T)- the number of class K patients who used a ventilator by time T
-​ Ak (T)- the number of class K patients who died
-​ Qk (T)

priority rule: (a1, a2,…, ak)
Decison= who gets priority
-​ ask E (0,1) indicates if a class k patient us assigned to the red queue or not
-​ the optimal ventilator allocation policy maximizes

prediction in this case
-​ ex: predictions for PK1
-​ we find higher mortality risk for patients with kidney disease, high BMI, suffering from
hypoxemia, etc

Existing and proposed allocation procedures
-​ SOFA score based prioritization= assighns patients with sufficiently low “sofa scores” tp
the red queue
-​ incremenrtal survivial priority (ISP)= assighns patients whose “estimated survival
probability” is above a threshold to the red queue

(The graph in my camera roll)
-​ Use the formula on the side to calculate which u should use for data and highest number
is the right data to use

phase 2: performance comparison (why?)
-​ expected number of surviving patients: ISP-LU > ISP > SOFA-P
-​ detah risk while waiting for a ventilator: ISP-LU < SOFA-P < ISP

conclusion
-​ facing resources shortages and necessity to ration scarves capacity triage teams should
1)​ use patient specific criteria beyond SOFA scores to better predict survivial probabilities
2)​ utilize a priority scheme that emphasizes both survivial and

, 02/05
sampling distributions and estimation

population vs sample
-​ sample mean= X bar
-​ sample standard deviation= S
-​ sample proportion= P
-​ these are also called random variables. They may vary based on the sample collected
-​ mue sigma and pie are population proportions
-​ N= population/ sample size
-​ Mue= the mean
-​ sigma= stabndrd deviation
-​ pi= Proportion
-​

central limit theorem
-​ r bar N(mu, sigma over n squared)
-​ sample mean X bar is a good estimator for mu
-​ but it is still a point estimate
-​ but we can not use CLT to construct an interval estimate
-​ population mean falls between X bar- Z alfa/2 sigma over n squared and X bar + z a/2
sigma over n squared with probability 1-a
-​ In order to get Z a/2= NORMSINV 100- the confidence interval percent and that will give
u ur Alfa so 100-90 Alfa will be 10
-​ plug into excel NOMSINV (1- the Alfa divided by 2)
-​ so do 100- the confidence interval and then take that number and divide it by two and
that should give you the alfa
-​ ex is confidence interval is 90 you do 100-90 is 10 and then 10 divided by 2 is 5 and
then u would plug 5 into NORMSINV (1- 5/2)

central limit theorem for T
(get notes from sldies)

central limit theorem fir proportions
-​ ratio of yes observations (X) to sample size (N)
-​ sample mean p=X/N is a good estimator for pi
-​ we can assume normality if NP is greater than or equal to 10 and N(1-p) is greater than
or equal to 10
-​ P- Z a/2 then multiple the entire square of P(1-p)/ N

Attendance 1 ( Z a/2)
Standard deviation= 2.5
Mean= 18
random sample= 100
€7,52
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
vivianab

Maak kennis met de verkoper

Seller avatar
vivianab Baruch College
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
10 maanden
Aantal volgers
0
Documenten
24
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen