100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

L13 & 14 - Engineering Novel Properties: thermal, non-aqueous, and oxidative stability.

Beoordeling
-
Verkocht
-
Pagina's
31
Geüpload op
19-02-2025
Geschreven in
2023/2024

Extensive notes for module 6BBB0333 Protein Structure & Design lecture 13 and 14 on Engineering Novel Properties: thermal, non-aqueous, and oxidative stability. Notes provide simply written explanations to lecture content, featuring many images to illustrate and break down the complexity of this module. I was awarded a first-class for this module and solely relied on these notes to prepare for my exam.

Meer zien Lees minder
Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Onbekend
Vak

Documentinformatie

Geüpload op
19 februari 2025
Aantal pagina's
31
Geschreven in
2023/2024
Type
College aantekeningen
Docent(en)
Mark pfuhl
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

6BBB0333


L13 & 14 – Engineering Novel Properties: thermal, non-aqueous, and oxidative stability



Evaluating protein stability with respect to temperature, salt and pressure

Currently available thermostable enzymes and their applications




- Looked at enzymes – easy though indirect way of measuring the thermal stability (i.e. if an
enzyme is still active at 90degs, implies it is still folded and active and can measure their
activity to confirm)
- Don’t need sophisticated tool to asses activity
- Process temperature column: temperatures ranging from 30 all the way to 110 (boiling and
beyond)
- Enzymes can adapt to a range of temperatures to operate
- Some processes require high temperatures e.g. baking (need thermostable enzymes)
- E.g. detergents have proteases (break down biomolecules)



Thermostability of protease enzymes from a variety of organisms

,6BBB0333


- Shows same type of protease from different organisms (bacteria)
- Second column – optimal temperature for growth for that particular microorganism (Topt)
- Enzyme taken from that organism (protease) and look at its melting temperature (Tm) or
half-life of enzymatic activity at a given temperature
- Unsurprisingly:
o Organisms that thrive at low temperatures (e.g. B. stearothermophilus), its enzyme
(e.g. Alkaline protease) does not last very long at high temperature
o E.g. D. mucosus Archaelysin Tm is 98 and half-life at 95 is 80 minutes
- Organisms have evolved to live in an ecological niche (extreme temperatures) – enzymes and
proteins needed for life to occur must adapt to conditions



Initial lessons from thermophilic bacteria

Comparing thermophilic vs. mesophilic enzymes



Mesophilic bacteria: optimal temperature of 30-40degs

Thermophilic bacteria: optimal temperature range of 50-60

- Looked at a range of proteins
o Thermolysin
o Phosphoglycerate kinase
o Glyceraldehyde-3-Phosphate dehydrogenase
o Malate dehydrogenase
o Thermitase vs. subtilisin
- Didn’t see anything obvious
- Conclusion:
o Comparing AA sequence and structures revealed no clear mechanism for
thermostability- studying the enzymes from slide 4
o Comparing sequences for thermophiles vs mesophilic showed abundant AA
substitutions
 Lys to Arg, Ser to Ala, Gly to Ala/Pro, Asp to Glu
 Examples from slide
 No theoretical basis for these was immediately apparent



Structural similarities and differences between thermophilic and mesophilic proteins

Similarities

- Both relatively similar
- 40-85% sequence homology
- 3D structures are superimposable
- Same catalytic mechanisms

Differences

- Increased stability of thermozymes attributed to amino acids sequence

,6BBB0333


- Aliphatic index (proportion of protein containing aliphatic (non-aromatic hydrophobic side
chains) AAs) increased in thermophilic proteins (Aliphatic AAs Ala, Val, Ile, Leu etc.)
o Increased contribution to hydrophobic core formation
o Increased three dimensional stability
- Salt bridges- More salt bridges in thermophilic ferredoxin, RNAse H, PGK, malate
dehydrogenase



After further comparisons, some empirical “rules” emerged




- Highlights
o Residue changes from medium to high temperature
o Shift in positively charged residues e.g. from lysine to arginine
o Shift in small residues e.g. serine to alanine
o Glycine frequently replaced by alanine/proline
o Aspartic acid replaced by glutamate
- E.g. Phosphoribosyl anthranilate isomerase
o E.coli (mesophilic): 20 Gly and 5 Pro
o T.maritima (thermophilic): 11 Gly and 11 Pro
- N.B. these were just observations – there were no detailed structures that would allow for
precise comparisons to show what these residues did.



Further Observations

Aliphatic index

- Thermophilic proteins show higher fraction of protein volume occupied by Ala, Val, Ile, Leu
etc.
- When you go from normal to higher temperature you see larger and more hydrophobic
amino acids in the sequence (more of protein volume becoming hydrophobic)

, 6BBB0333


Salt bridges (ion pairs)

- More salt bridges as you increase in temperature
- Additional salt bridges in ferredoxin, RNaseH, PGK, malate dehydrogenase etc. from
thermophiles



Crystallographic B factors

- The B factor is a measure of the average displacement, i.e. the mobility, of each atom in a
structure
- It helps to describe how much atoms in a protein or other biomolecule vibrate or move due
to temperature. A higher B factor indicates more movement or flexibility of the atoms, while
a lower B factor suggests less motion. Essentially, it provides insights into the dynamic
behavior of molecules within a crystal.
- Large B factor – difficult to position atom in the electron density because potentially there is
a bit of movement in the crystal vibration
- It is a measure of local dynamics/flexibility
- Large b factor:
o Atoms are more flexible and dynamic rather than rigid
o Greater uncertainty or variability in the exact positions of atoms in a crystal lattice
due to thermal fluctuations
- Thermostabilty correlates with lower B factor i.e. Stability ∼ Rigidity
- Cold-adapted enzymes show higher B factors and greater flexibility at room temperature



Hyperthermophilic enzyme

First crystal structure: Aldehyde ferredoxin oxidoreductase, 1995

- Topt = 100∘C; Pyrococcus furiosus
- Metallo-protein: Fe4S4 Mo W
- Normal amino-acid composition
- Normal fraction of 2∘ and 3∘ structure
o Usual mixture of alpha helices and beta sheets
- No disulphide bridges
- Small solvent-exposed surface area
o No cavities or crevices
o Small surface area, protein is quite compact
o Volume needed for enzymatic activity squeezed tightly, not extensive reaching out
into space
- Large number of salt bridges
o Iron-sulphur cluster (yellow balls)
€19,28
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
elisavillacampa82

Maak kennis met de verkoper

Seller avatar
elisavillacampa82 Cambridge University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
10 maanden
Aantal volgers
0
Documenten
10
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen