100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Foundations of Multi-Agent Systems

Beoordeling
-
Verkocht
1
Pagina's
26
Geüpload op
18-04-2020
Geschreven in
2017/2018

Dit is een samenvatting van het tentamen van het vak Foundations of Multi-Agent Systems van de Universiteit van Amsterdam. De samenvatting is op volgorde van de colleges.

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
18 april 2020
Aantal pagina's
26
Geschreven in
2017/2018
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Samenvatting Multi-Agent Systems
Social Computational Choice
Collective decision making: a situation that arises when a group needs to make a decision. The
views of the individual members of that group should be aggregated into a single collective view that
adequately reflects the ‘will of the people’.
• Forms of collective decision making:
o Voting
o Matching
o Fair division
o Judgement aggregation:
▪ Judges have to reach a verdict based on their opinions. Make a group decision
about several different but related issues

Voting
How to choose the ‘appropriate’ voting rule?
• Which kind of preferences are the agents allowed to have?
o Do they prefer something over something else, or are the choices equally good?
o Do they need to be compared to all other alternatives (like Borda)?
• What do we do in case of ties?
• Do we want a set of ‘winners’(social choice function) or a full ‘collective’ preference (social
welfare function)?
• Do we have computational complexity constraints?
• Do we want some ‘consistency’?
• Which aggregation requirements (properties) should the rule satisfy? (important)
o Anonymity: the names of the voters do not matter (i.e. if two voters exchange
preferences, the outcome is unaffected)
o Neutrality: the names of the options do not matter (i.e. if two options are exchanged
in ranking, the outcome changes accordingly)
o Participation, monotonicity, strategyproofness, Condorcet principle, Pareto principle
▪ Explained in the section with all voting rules
o Reinforcement: if an alternative wins in two disjoint subgroups, then it should also win
when the groups are put together

Basic setting

,Voting rules
• Majority


o + Works perfectly when |X| = 2 and n is odd
o – For |X| > 2 it might not exist
o – When used pairwise to get a social welfare function, it might result in cycles
• Plurality


o + Works well with 2 candidates
o – Only considers the favorite candidates, allowing very disliked winners:
▪ A > B > C (x20)
▪ B > C > A (x19)
▪ C > B > A (x19)
• A is the best for 20, but the worst for 38
• Single transferable vote (STV)
o If an alternative is selected by majority, it wins
o Otherwise, eliminate the ‘plurality loser’ from the preferences and repeat the
procedure
o + The full preference ordering is used
▪ Various options for how to deal with ties during elimination
▪ Variations
• Plurality with run-off: eliminate all but a designated number of
candidates
• Coombs, Baldwin, Nanson (different elimination criteria)
o – In some cases, it is better to abstain than to vote




▪ Not voting for a preference B > C gives a better result than voting does for B
▪ This violates participation: voting truthfully should not be worse than
abstaining
o – If the winner gets further support, she might lose




▪ This violates monotonicity: if the selected get additional support, they are still
selected
• Borda
o Each agent submits her full ordering; her best choice gets m-1 points, her second-best
choice gets m-2, and her worst choice gets 0 points
o Points are added. Winner: alternative with most points
o + The full preference ordering is used
▪ Different formulas for assigning points might be used
o – It is sensitive to discarding non-winning options

, ▪ C is not winning, but if it is removed, the winner changes
o – It is very sensitive to adding Borda-worst options




o – It is susceptible to manipulation




▪ Switching the preference of A and C for 3 people that actually prefer B the
most causes B to win after this manipulation
▪ This violates strategyproofness: no voter has ever an incentive to submit false
preferences
o – An alternative other than the winner might beat every other in pairwise majority




▪ This violates the Condorcet principle: an alternative that wins pairwise
majority against all other candidates (Condorcet winner) should be the only
winner when it exists
• Copeland
o Do pairwise majority contests. Each alternative gets +1 for a win and -1 for a loss
o Winner: alternative with the most points
o + Satisfies the Condorcet principle
o – Very likely to produce ties
o – Too much emphasis on quantity of victories and defeats, forgetting about their
magnitudes




▪ A would win with Copeland’s rule, but when you look at with how much A
wins and how much B wins, B has a much greater victory
• Positional scoring rules


o

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
kimgouweleeuw Universiteit Twente
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
86
Lid sinds
5 jaar
Aantal volgers
59
Documenten
34
Laatst verkocht
1 jaar geleden

3,7

7 beoordelingen

5
1
4
3
3
3
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen