100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary: Data Management

Beoordeling
-
Verkocht
-
Pagina's
62
Geüpload op
23-12-2024
Geschreven in
2024/2025

Summary of course Data Management from












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
23 december 2024
Aantal pagina's
62
Geschreven in
2024/2025
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Summary: Data Management [HMH25f] – Axel Temmerman




Data Management
Summary (2024 - 2025)

Chapter 1: Introduction & Motivation...................................................................... 2
Chapter 2: Relational Databases..............................................................................7
Part 1 – Entity Relationship Diagram..................................................................... 7
Part 2 – The Relational Model.............................................................................. 11
Part 3 – ER2RM........................................................................................................ 20
Chapter 3: Data Warehousing.................................................................................25
Part 1 – What’s a Data Warehouse & Star Schema.............................................25
Part 2 – Why use a Star or Snowflake schema?..................................................30
Part 3 – What about changes in dimensions?......................................................44
1. Thinking in Dimensions...............................................................................44
2. Slowly Changing Dimensions: Modelling History........................................46
2.1 A History Table per Attribute................................................................47
2.2 A History Table for each Entity Type....................................................48
2.3 A history table to replace a Dimension Table...................................... 49
Summary of the 3 options:.........................................................................49
3. Rapidly Changing Dimensions....................................................................50
4. Date and TIme in a data warehouse...........................................................52
5. Storing “states” of events: Snapshots vs. State Tables...............................52
DWH Design Conclusions.................................................................................... 54
Chapter 4 - OnLine Analytical Processing (OLAP)........................................................... 55
1. What is OLAP?.............................................................................................................55
2. Types of OLAP............................................................................................................. 55
2.1 Relational OLAP................................................................................................... 56
2.2 Multidimensional OLAP........................................................................................ 57
Dimensions & Measures.......................................................................................57
Slicing................................................................................................................... 57
Dicing....................................................................................................................58
Dimensions & Sub-dimensions.............................................................................58
Roll-up and Drill-down.......................................................................................... 58
Nesting................................................................................................................. 59
2.3 Hybrid OLAP........................................................................................................ 60
3. Applications.................................................................................................................. 60
Pivot Tables................................................................................................................ 60
Pivot Tables in MS Excel............................................................................................ 61




1

, Summary: Data Management [HMH25f] – Axel Temmerman




Chapter 1: Introduction & Motivation
Definition of Data Modeling
●​ Data modelling is a process used to define and analyse data requirements
needed to support the business processes within the scope of corresponding
information systems in organisations
○​ It is the process of creating a data model for the data to be stored in a
database. This data model is a conceptual representation of data
objects.
○​ The idea is that you start from a set of business processes and build a
relational data model that will support the execution of these processes
○​ A relational database is composed of different tables linked through
relationships
○​ Database normalisation is the process of restructuring a relational
database in accordance with a series of so-called normal forms in
order to reduce data redundancy and improve data integrity.
Definition of Business Intelligence (BI)
●​ Business Intelligence (BI) is an umbrella term that includes architectures,
databases, tools, applications and methodologies.
●​ Content-free term; means different things to different people
○​ Objective: enable interactive access to data, its manipulation (data
warehouse design) and provide business managers and analysts the
ability to conduct analyses (business analytics)
○​ (Better) decision making based on the analysis of historical and current
data, situations and performances: transformation of data into
information
●​ Data Warehouses are relational databases but include denormalized tables.
The goal in DW design is to have the simplest structure possible to enable
handling effective queries.

From data to information




2

, Summary: Data Management [HMH25f] – Axel Temmerman




Database Architecture




From Operational Databases to a Data
Warehouse and its Analysis
The data harvested from operational
systems, ERPs, CRMs and Flat Files
needs to be transformed through an ETL
system in order to be stored in the Data
Warehouse.
This is because the data gathered on the
left side of the graph is not structured in the
same way as the Data Warehouse.
Transforming the data turns it into
information, which you can subsequently
use to make Olap Analysis, Reporting or Data Mining.

BI Architecture: A second view




3

, Summary: Data Management [HMH25f] – Axel Temmerman




Operational Database vs. Data Warehouses
The Operational Database is the database used for real-time transactions; it is aimed
to support the business in its everyday operations (buying, invoicing, logistics…)
-​ Is tailored for the transactional software system
-​ Is stored on one place in the Database Management system (e.g. Oracle,
SQL Server, …)
-​ Follows the relational model, normalized architecture
The Data Warehouse is the database for Business Analytics (in other words the data
source used into BI)
-​ Separate system
-​ Is loaded from different operational systems (mainly databases)
-​ Own architecture (star, snowflake diagram)
Reports, OLAP, Data Mining
-​ Reports: overview of information
●​ Summary of data
●​ Computation of sums and means
●​ User friendly presented
-​ OLAP: Online Analytical Processing
●​ Summary of data and computing of sums
●​ Original information remains available in OLAP
○​ “Roll-up”: aggregation of detailed data
○​ “Drill-down”: find out how a total sum or average was computed
(through which original data)
●​ With sophisticated tools (e.g. a dashboard application)
●​ A pivot table is an example of OLAP

-​ Data Mining
●​ Objective: mining the data to (hidden) patterns, trends to find out
●​ Mining can be used through 2 manners:
○​ With conventional statistics (correlation analysis, clustering,
regression)
○​ With artificial intelligence: neural networks and fuzzy logic
(module 3)
●​ With the use of specifically developed tools (module 3)




4
€15,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
axel_temmerman

Maak kennis met de verkoper

Seller avatar
axel_temmerman Katholieke Universiteit Leuven
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1
Lid sinds
11 maanden
Aantal volgers
0
Documenten
4
Laatst verkocht
2 maanden geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen