100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

LINEAR ALGEBRA EXAM STUDY GUIDE SET QUESTIONS AND ANSWERS

Beoordeling
-
Verkocht
-
Pagina's
12
Cijfer
A+
Geüpload op
01-12-2024
Geschreven in
2024/2025

LINEAR ALGEBRA EXAM STUDY GUIDE SET QUESTIONS AND ANSWERS

Instelling
LINEAR ALGEBRA
Vak
LINEAR ALGEBRA









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
LINEAR ALGEBRA
Vak
LINEAR ALGEBRA

Documentinformatie

Geüpload op
1 december 2024
Aantal pagina's
12
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

LINEAR ALGEBRA EXAM STUDY GUIDE
SET QUESTIONS AND ANSWERS
Determine whether the statement below is true or false. Justify the answer.
Every elementary row operation is reversible. - Answer-The statement is true.
Replacement, interchanging, and scaling are all reversible.

Determine whether the statement below is true or false. Justify the answer.
Elementary row operations on an augmented matrix never change the solution set of
the associated linear system. - Answer-The statement is true. Each elementary row
operation replaces a system with an equivalent system.

Determine whether the statement below is true or false. Justify the answer.
A 5×6 matrix has six rows. - Answer-The statement is false. A
5×6
matrix has five rows and six columns.

Determine whether the statement below is true or false. Justify the answer.
Two matrices are row equivalent if they have the same number of rows. - Answer-The
statement is false. Two matrices are row equivalent if there exists a sequence of
elementary row operations that transforms one matrix into the other.

Determine whether the statement below is true or false. Justify the answer.
The solution set of a linear system involving variables x1, ..., xn is a list of numbers
s1, ..., sn that makes each equation in the system a true statement when the values s1,
..., sn are substituted for x1, ..., xn, respectively. - Answer-The statement is false. The
given description is of a single solution of such a system. The solution set of the system
consists of all possible solutions.

Determine whether the statement below is true or false. Justify the answer.
Two fundamental questions about a linear system involve existence and uniqueness. -
Answer-The statement is true. The two fundamental questions are about whether the
solution exists and whether there is only one solution.

Determine whether the statement below is true or false. Justify the answer.
In some cases, a matrix may be row reduced to more than one matrix in reduced
echelon form, using different sequences of row operations. - Answer-The statement is
false. Each matrix is row equivalent to one and only one reduced echelon matrix.

Determine whether the statement below is true or false. Justify the answer.
The echelon form of a matrix is unique. - Answer-The statement is false. The echelon
form of a matrix is not unique, but the reduced echelon form is unique.

Determine whether the statement below is true or false. Justify the answer.

, The row reduction algorithm applies only to augmented matrices for a linear system. -
Answer-The statement is false. The algorithm applies to any matrix, whether or not the
matrix is viewed as an augmented matrix for a linear system.

Determine whether the statement below is true or false. Justify the answer.
The pivot positions in a matrix depend on whether row interchanges are used in the row
reduction process. - Answer-The statement is false. The pivot positions in a matrix are
determined completely by the positions of the leading entries in the nonzero rows of any
echelon form obtained from the matrix.

A basic variable in a linear system is a variable that corresponds to a pivot column in
the coefficient matrix. - Answer-The statement is true. It is the definition of a basic
variable.

Reducing a matrix to echelon form is called the forward phase of the row reduction
process. - Answer-The statement is true. Reducing a matrix to echelon form is called
the forward phase and reducing a matrix to reduced echelon form is called the
backward phase.

Suppose a 4×7 coefficient matrix for a system has four pivot columns. Is the system
consistent? Why or why not? - Answer-There is a pivot position in each row of the
coefficient matrix. The augmented matrix will have
eight
columns and will not have a row of the form
00000001
,
so the system is consistent.

Another notation for the vector
[−4
3]

is
[−4 3]
. - Answer-The statement is false. The alternative notation for a (column) vector is
(−4,3),
using parentheses and a comma.

Any list of five real numbers is a vector in
ℝ5. - Answer-The statement is true.
ℝ5
denotes the collection of all lists of five real numbers.

An example of a linear combination of vectors
v1
and
€13,60
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
biggdreamer Havard School
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
248
Lid sinds
2 jaar
Aantal volgers
68
Documenten
17956
Laatst verkocht
2 weken geleden

4,0

38 beoordelingen

5
22
4
4
3
6
2
2
1
4

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen