100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting econometrie (deel 1)

Beoordeling
5,0
(1)
Verkocht
-
Pagina's
21
Geüpload op
03-02-2020
Geschreven in
2018/2019

Deze samenvatting bevat H1-H8. Zowel het boek, als slides, als notities vanuit de les zijn verwerkt in deze samenvatting.











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
H1, h2, h3, h4, h5, h6, h7, h8
Geüpload op
3 februari 2020
Aantal pagina's
21
Geschreven in
2018/2019
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Econometrie voor bedrijfseconomen
HOOFDSTUK 1: Economische vraagstukken en data
1. Wat is econometrie?
 Modellen voor economische fenomenen opstellen
 Opletten voor causaal verband (oorzaak-gevolg)  geluk!!
- Zorgen dat alle variabelen die verband kunnen veroorzaken mee in het model zitten
- Vb: onveilige seks prostitutie  te verklaren variabele = prijs (andere variabelen = leeftijd…)

2. Economische data
2.1 Hoe wordt economische data gegenereerd?
1) Experimentele data  gegenereerd via experiment vb: invloed bemesting op tomaten
- Voordeel: oorzaak-gevolg
- Nadelen:
 Vaak slechts een nabootsing van de werkelijkheid
Vb: onderzoek naar belastingontduiking (zie artikel online)
 Niet altijd mogelijk (praktisch, ethisch…)  zeker voor economische/sociologische
Vb: effect van extra jaar studeren op loon  dwingen om 1j extra te studeren?
 pseudo-experimenten = experiment nabootsen (gelijkaardige omstandigheden)
2) Niet-experimentele data (meest gebruikt)
- Surveys, landendata… vb: Labour force survey
- Voordeel: vaak grote representatieve datasets
- Nadeel: opletten met oorzaak-gevolg
 technieken van betrouwbaarheid  zoveel mogelijke controlevariabelen in model

2.2 Types van economische data
 Data kan op verschillende niveaus verzameld worden
- Micro: personen, huishoudens, bedrijven… (via enquêtes)
Vb: effect opwaarderen buurt op prijs?  gegevens = huizen
- Macro: gemeenten, landen (geaggregeerde gegevens)
Vb: gemiddelde huur huis in ≠ gemeentes?
 Kwantitatief of kwalitatief?
- Kwantitatief: te verklaren (afhankelijke) variabele
- Kwantitatief + kwalitatief: verklarende (onafhankelijke) variabele
 Vast tijdstip of evolutie?
- Cross-sectionele data: data over verschillende entiteiten voor 1 bepaalde tijdsperiode
 doorsnede op 1 moment vb: hoeveel kost een huis NU?
- Tijdreeksdata: data over 1 bepaalde entiteit maar van verschillende tijdsperiodes
- Paneldata (longitudinale): data over ≠ entiteiten + elk geobserveerd voor  2 tijdsperiodes
 combinatie van vorige 2 technieken (complex)

HOOFDSTUK 2 & 3: Herhaling kansrekenen en statistiek
1. The California Test Score Data
1.1 Probleem
 Probleemstelling: effect op examenresultaten van  vd klasgrootte met 1 student?
- n = 420 schooldistricten in California
- Variabelen: testscores van 5e graad en student-teacher ratio (STR)
- Macro-niveau  gemiddelde per district
 Hebben districten met kleinere klassen hogere testscores?  spreidingsdiagram
1

, - Verklarende variabele = STR
- STR  = testscore   negatief verband
 Is dit een causaal verband?
 andere variabelen/verklaringen vb: rijkere districten = meer middelen

1.2 Verkennende analyses
 Kwantitatief bewijs dat districten met lagere STR, hogere testscores hebben?
1) Schatting: vergelijk gemiddelde testscores bij districten met lagere STR met deze bij hogere
- Schatting van ∆=μklein−μ groot = verschil tss de groepsgemiddelden
- μklein−μ groot =7,4
2) Toetsen van hypothesen: test H0 dat de gem testscores in de 2 types districten dezelfde zijn
- Toetsen tegen de alternatieve hypothese dat ze verschillen
- H 0 : μklein =μ groot vs . H a :μ klein ≠ μ groot
ý k − ý g
t= =4,0480
s 2k s2g  P ( T ≥ 4,0480 )=0,000063  H 0 verwerpen
- Teststatistiek:
√ +
n k ng
3) Betrouwbaarheidsintervallen: bereken een interval voor het verschil in de gem testscore
- ý k − ý g ±1,96 SE( Ý ¿¿ k−Ý g)=[3,81; 10,99]¿
- 0 ligt niet in het BI  H 0 verwerpen
 Besluit: we hebben voldoende sterk bewijs tegen de nulhypothese om deze te verwerpen
 de testscores van districten met lagere STR verschillen significant van deze bij hogere STR

HOOFDSTUK 4: Enkelvoudige lineaire regressie
1. Het lineair regressiemodel
1.1 Het enkelvoudig lineair regressiemodel
 Vb: prijs appartement in groot-Leuven  vermoeden van positief lineair verband tss prijs en opp
 Y = prijs in euro, X = oppervlakte in m2
 Y = β0 + β 1 X !!MAAR: het verband is niet perfect  foutenterm u
- We hebben n observaties: ( X i , Y i ) ,i=1 ,… , n
- Y i=β 0 + β 1 X i+ ui
 Algemeen model
- Y = de afhankelijke (te verklaren) variabele en X = de onafhankelijke (verklarende) variabele
- β 0 = intercept en β 1 = helling
- ui = de foutenterm (error term)  bevat alle andere variabelen dan X met invloed op Y
 bevat ook alle andere fouten (meetfouten, toeval…)

1.2 Correlatie
Spreidingsdiagram
 Nagaan of er een lineair (of ander) verband is tussen X en Y?  spreidingsdiagram
= grafische voorstelling van de koppels gegevens (x1, y1), (x2, y2),..., (xn, yn)
 Deze koppels vormen een puntenwolk waar een bep (lineair) patroon in te vinden is

Steekproefcovariantie
n
1
 Covariantie = stijgend of dalend verband?  s x, y = ∑ ( x −x́ ) ( y i− ý ) !!niet dimensieloos
n−1 i=1 i
 Positieve bijdrage
- x i> x́ en y i > ý  +¿+ ¿+¿
- x i< x́ en y i < ý  −¿−¿+¿
 Negatieve bijdrage
- x i< x́ en y i > ý  −¿+¿−¿
2

, - x i> x́ en y i < ý  +¿−¿−¿

Steekproefcorrelatie
 Correlatie: zin/richting en sterkte van het lineair verband (cov meet enkel richting)
sx , y
 Formule: r x , y = !!dimensieloos = correlatie onafh van gebruikte eenheid
sx s y
 Eigenschappen
r x , y =s x−x́ y− ´y
- Correlatie = covariantie van gestandaardiseerde gegevens  ,
sx sy
- Dus eenheden worden eruit gehaald  correlatie = dimensieloos ( μ=0 en σ =1)
 Interpretatie: correlatie meet richting en sterkte vd lineaire samenhang tss 2 kwantitatieve variab
- Richting via het teken van de correlatie
 Positief (stijgend) verband  r > 0
 Negatief (dalend) verband  r < 0
- Sterkte via de grootte van de correlatie: -1 ≤ r ≤ 1
 hoe dichter bij -1 of 1, hoe sterker het lineaire verband (hoe dichter bij 0, hoe zwakker)
 r = 1: perfect stijgend lineair verband (punten liggen perfect op stijgende rechte)
 r = -1: perfect dalend lineair verband tss x en y
 r = 0: totale afwezigheid van een lineair verband tss x en y
 Opmerkingen
- Correlatie verandert niet bij een lineaire transformatie van x of y
- Correlatie meet enkel de sterkte vh lineaire verband (er kan mss wel een ander verband zijn)
- rx,y = ry,x  maakt niet uit welke de ‘te verklaren’ en welke de ‘verklarende’ variabele is
- x en y moeten kwantitatieve variabelen zijn
- De correlatie is niet resistent (gevoelig voor uitschieters)  tekening maken!!

Populatiecovariantie en -correlatie
 Eigenschappen + interpretatie zijn analoog aan die van steekproef-
 X en Y zijn ongecorreleerd als corr(X, Y) = 0 (geen lineair verband)
- X en Y onafhankelijk = X en Y ook ongecorreleerd (geen verband)
- X en Y ongecorreleerd ≠ X en Y ook onafhankelijk

2. Schatten van de regressieparameters
2.1 Kleinste kwadraten criterium
 Model: Y i=β 0 + β 1 X i+ ui  β 0 en β1 geschat op basis van een steekproef




 ^β 0 en ^β1 bepaald zodat de rechte ^β 0 + ^β 1 X i zo goed mogelijk bij de puntenwolk aansluit
- Zorgen dat verschil tussen theoretische en geschatte rechte zo klein mogelijk is
- Verschil = residu (fout op schatting): u^ i=Y i−Y ^ i=Y i −( ^β 0 + ^β 1 X i)
- Som moet zo klein mog zijn  MAAR: + en – heft elkaar op?
 daarom som van kwadraten zo klein mogelijk maken
- Totale kwadratische afwijking minimaliseren  ^β 0 en ^β1 zodat
n n n
2 2 2
 min ∑ u^ i =∑ ( Y i−Y^ i ) =∑ ( Y i− ^β 0− ^β 1 X i)
i=1 i=1 i=1
 Kleinste-kwadraten criterium
∑( X i − X́ )( Y i −Ý ) S XY SY
- ^β 1= = =R
∑ ( X i − X́ ) 2
S
2
X
SX
 Voorwaarde: S X ≠ 0

3

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
2 jaar geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
inezvandezande Katholieke Universiteit Leuven
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
179
Lid sinds
9 jaar
Aantal volgers
119
Documenten
7
Laatst verkocht
2 maanden geleden

3,5

28 beoordelingen

5
2
4
14
3
7
2
5
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen