100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting aadvanced research methods

Beoordeling
-
Verkocht
-
Pagina's
82
Geüpload op
14-10-2024
Geschreven in
2024/2025

Samenvatting van de qualitatieve literatuur en alle colleges

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
14 oktober 2024
Aantal pagina's
82
Geschreven in
2024/2025
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Advanced Research Methods

Knowledge clip 1

Dag theory
 Research question
o Must satisfy two conditions
 Open ended question
 Needs to include some causal language
 Dag theory
o Directed acyclic graphs are graphical representations of the
causal structure underlying a research question
 Exposure X to outcome Y





o Unbiased
 Correct for other factors such as diet and lifestyle (in this
case)
 Remove disruptive influence of other factors
o Dags
 Dags help to visualize the causal structure underlying a
research question
 You need a priori theoretical/subject knowledge about
the causal structure to draw a DAG
 E.g. from previous studies, literature, common
sense, etc.
 Collect data on all relevant variables
 Simle rules can be applied to determine for which
variables to add in regression analysis and how to
interpret the results
 Dag terminology
o Paths
 RQ: influence of x on y?
 A path is any route between exposure x and outcome y
 Paths do not have to follow the directions of the arrow

, 





o Causal paths and backdoor paths
 A causal path follows the direction of the arrows
 A backdoor path does not





o Open and closed paths, and colliders
 All paths are open, unless they collide somewhere on a
path
 A path is closed if arrows collide in one variable on that
path
 A variable in which the arrows collide = a collider

, 
o Blocking open paths
 Open (causal or backdoor) paths transmit association
 The association between x and y consists of the
combination of all open paths between them
 Here: all paths except x  w  Y
 To examine the influence of x on y, and only that, the
other associations that are not directly relevant need to
be removed > blocking those open paths
 Block those open paths  block open backdoor paths by
including a variable on that backdoor path in the
regression analysis
 An open path is blocked when we adjust for a variable L
along the …
 This means that we remove the disruptive influence of L
from the association between X and Y
 How? By including variable L in the regression analysis
 Backdoor paths always need to be closed
 Causal paths need to be open/closed depending on RQ

o Opening blocked path
 Include a collider in the analysis means you open the
blocked backdoor path
 Opening a backdoor path is disruptive for the association
between x and y  introduce bias of the influence
 Avoid bias by closing the backdoor path again  remove
the collider or add another variable that removes the
disruption

Lecture 1 causal inference
 Developments in quantitative research
o 1960-2010: focus on statistical methods
 Development of new techniques
 Improvements in computers and software
 Standardization of tests, focus on objectivity and
replicability

,  Helpful and harmful
o Since 2010: statistics is not so black and white
 Causal theory
 What (variables) should be part of a quantitative
analysis
 Statistics is not just about numbers
 Interpretation: meaning of results depends on context 
moving beyond p-value < 0.05
o Three different reasons for examining relationship between x
and y
 Description: patterns X and Y
 Prediction: Y given X
 Causal inference: Effect X on Y






o Causal inference
 Not interested in outcome per se
 Interested in the role of the treatment X on the outcome
 In an individual, a treatment has a causal effect if the
outcome under treatment 1 would be different from the
outcome under treatment 2
o Causal effect formal notation



€9,16
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
remkegengler

Maak kennis met de verkoper

Seller avatar
remkegengler Radboud Universiteit Nijmegen
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
4
Lid sinds
7 jaar
Aantal volgers
4
Documenten
9
Laatst verkocht
1 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen