100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Hoofstuk 6 en 12

Beoordeling
-
Verkocht
-
Pagina's
19
Geüpload op
10-10-2024
Geschreven in
2023/2024

Deze samenvatting bevat hf 6 en 12. De andere samenvatting bevat de andere hoofdstukken. Het leren van deze samenvatting biedt inzichten in de materie.











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
10 oktober 2024
Aantal pagina's
19
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

6.2. Shrinkage methods
1) ridge regression
2) lasso regression

6.2.1. Ridge regression
Recall that least squares regression minimizes RSS to estimate coefficients. The coefficients are unbiased, meaning that
least squares doesn't take variable significance into consideration when determining the coefficient values.




-> first term= RSS
-> second term= shrinkage penalty: term that shrinks the coefficients towards 0
-> λ =tuning parameter that controls the relative impact of the penalty term on the regression model


λ is large: coefficients must be small to make the second term small enough
-> coefficient estimates that come from ridge regression= biased: because variable significance
-> different values of λ will produce different sets of coefficient estimates
-> choose proper λ value through cross-validation

 SCALING OF THE VARIABLES IS IMPORTANT

Ridge regression> least squares regression
Advantage ridge regression: bias-variance tradeoff
λ =0: high variance, no bias -> penalty term has no effect
increases λ -> flexibility of ridge regression decreases-> variance decreases-> bias increases
=> variance of the ridge regression predictions as a function of λ
if p is almost as large as n: use ridge regression (bc least squares regression has high variance)

Ridge regression > subset selection
=> computational advantages: ridge only fits a single model

Disadvantages:
-> will include al p predictors in the final model
-> penalty will shrink all of the coefficients towards 0 but will not set any of them exactly 0

(unless λ =0)
-> problem for model interpretation when p is large




1

,6.2.2. Lasso regression


-> shrink coefficients estimates towards 0
-> different penalty: forces some of the coefficients estimates to be exactly zero when the tuning
parameter λ is large enough

=> lasso regression performs variable selection (easier to interpret the final model)

• λ =0: least squares fit
• λ is super large: null model (coefficients estimates=0)

ridge regression vs lasso regression
lasso can produce a model involving any number of variables
 ridge will always include all of the variables

ridge regression > lasso regression
=> response is a function of a large number of predictors

ridge regression < lasso regression
=> response is a function of only a few of the predictors




- all the points on a given ellipse share a common value of the RSS
- the further away from the least square coefficients estimates, the more RSS increases
- the lasso and ridge regression coefficients estimates are given by the first point at which an
ellipse contacts the constraint region (=blue region) = de schattingen van de lasso- en rigde
regressiecoëfficiënten worden gegeven door het eerste punt waarop een ellips het
beperkingsgebied raakt (=blauw gebied)
- lassobeperking heeft hoeken
=> ellipsen snijden het beperkingsgebied vaak op een as=> gelijk aan nul
- here: snijpunt bij B1=0 : resulting model will only include B2
- ridge: circular constraint with no sharp points (cirkelvormige beperking)
=> intersectie zal over het algemeen niet voorkomen op een acis=> niet -nul


2

, p=3
ridge regression=sphere
lasso= polyhedrion

p>3
ridge= hypersphere
lasso= polytope

advantage lasso:
-> more interpretable models that involve only a subset of the predictors
-> bc off variable selection

TYPES OF SHRINKAGE

o ridge: shrinks each least squares coefficients estimate by the same proportion
o lasso: shrinks each least squares coefficients estimate towards zero by a constant amount
-> coefficients that are less than this amount in absolute value are shrunken entirely to 0
= soft thresholding
=> feature selection

BAYESIAN INTERPRETATION

▪ Gaussian distribution (with mean zero and standard deciation a function of λ)
=> posterior mode for B (=most likely value for B given the data) = ridge regression solution
=posterior mean
▪ Double- exponential (Laplace, with mean zero and scale parameter a function of λ)
=> posterior mode for B= lasso solution (not a posterior mean)

SELECTING THE TUNING PARAMETER Λ

1. create a grid of different λ values
2. determine the cross-validation test error for each value
3. choose the value that resulted in the lowest error




3

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
MarieVerhelst60 Universiteit Gent
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
11
Lid sinds
1 jaar
Aantal volgers
0
Documenten
10
Laatst verkocht
4 weken geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen