100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting - Financial Econometrics (6414M0007Y)

Beoordeling
-
Verkocht
4
Pagina's
24
Geüpload op
27-09-2024
Geschreven in
2023/2024

Uitgebreide samenvatting van het vak Financial Econometrics.

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
27 september 2024
Aantal pagina's
24
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Univariate linear time series
Time serie is a sequential set of observations on variable x, where t represents time Exa =..., Xe-2 ,
Xe ,
Xe ,
Xe +, Xe +, ...




Financial returns
-
One-period (simple) return PA Pe DA Pt-1 Pt Pt-1 DE
note
PA
-

+
-
- - 1




regular (if dividends are included
: RE =
Pt-1 Rt =
Pt -1 =
Pe -
1
+
Pt -1
) RE
returns
log-return =log) Rt) leg (p) :

log -log Pr , +
= =

pr -pe
= Pr =

spe Pt
price
-
Multi-period return (sum of one-period returns), use log-returns k - 1
dividens
De


re[k] =
pt
-



pe m
=
(pt -


pt
1) -



(pt ps k)
- =
ra +
(pt 1
-



pe
-z) +
(pec -



pe
-b) =
ra + re + ...
grej



#




Using these concepts of time series and financial returns, we get financial time series
example
Prices Log of prices Log of return




properties financial time series
-
stationarity
strict stationarity: distribution of (xh + 1,
, . . .,
Xer +
1) does not depend on t for any integers Et , ....
Ab and t


distribution does not change when we shift, hence change t
7




weak stationarity
8
constant mean, independent of time: E(xt) M =




O
constant variance, independent of time: Var(xe) G =




El(x m)(x )]
constant autocovariance, independent of time: (x
e)
O

for( j
: - -
=
,




-
autocorrelation function ACF: pl =
core (xt ,
xx e) =
Var(xe) =


yo
D E(ae) Var(ae) Cov(at are)
example stationary process, White Noise: = 0
,
=
8, ,
=
o




models
d
Linear process: m j +jatj m Xt =
+ = + Nodt + 4 , at - ....




Pit
stationary with mean M , variance z4, and ACF Al 204j
7 =




Wold's decomposition theory states that any stationary proces [xe] can be written as sum of linear and
deterministic processes Ewa]
We could also at a lag operator B, defined by Bxt =
XA -
, hence Baxt =
Xe b -




I

, N




Then we could write the linear process as xt =

m
+ x(B) at =

m
+ 4oat + 4 , at - ...
+ That - b



- +(B) =
j4 B ,



8
Autoregressive process
· AR( ) ,
:
xt =
00 + Ext -1 + at

①o Ga
7
stationary if 10 14 , then E(x) A Var(xz) -0 ,
yo
= =

m
=
. =
1 -

, 1




proof 00 Xt = + 6 , Xt -
1 + at




(1 -
d, B) xt =
00 + at




x =
,)1 qB)" (d at)
-
+ =
j(q B)" (4,
+ a) =
Tod, (0 +
atj)
-
d(B) =
1 - d B ,
=
0




&
AR( ) 4
5
ACF ,
stationary 1
is linear process with exponentially decaying weights =
6 ,
, we find =

pe
=
0


AR(p)
·
:
xt = do + d , xt -
1 + +
6pxt -


p
+ at

example
...




Et
ye
0
3yt +
=
0
1yt
. - + .
-
2


>

stationary if all zj lie outside unit circle: ye
-
0 .


3yt -
1
-
0 .



1yt 2
=
Et




xt- t
proof X- ·
,

(1 -
0 .
3) -


o .,
(2) ye =
Es




↓ (2) 122
for =
1 -
0 32.
-
0 .
= 0 2 = -
522 = 2



((z) =
1 -
0 , 2 ....
-

pzP = 0 #
as both lie outside unit circle, stationary

&
ACF can not be determined, but we can use partial autocorrelation function (PACF), for
AR(p), the PACF has cut-off point at l p =




Q

Moving Average model
·
MA(1) :
x =
20 + at -
G at -1
,




7

stationary for all parameter values with M ja) +i)
jo er =
=
1 +
,




-- for hence ACF is cut-off at l peo
>
,
p 1
. =
,




>
invertible if 18 14 .
, a model is invertible if it can be expressed as AR(n)

proof XA =
at + fat -
1




at =
xx
-
G , at -
1
=
Xt - 0(xt - - at z) =... =
x -
Ext + + 0xx 2 - 83x 3 + ...




D




( f)" AR(g) 101
= -




i =
-
+ a =

only works as
>
PACF decays exponentially
MA(q)
·
at-Gat- . . .
xt co
gatg
-
: = +




>
ACF has cut-off point at l g =




invertible if all roots zj lie outside unit circle: Fiat -
at
gatq
7
Xt e0
-
=
+ -
-...




xe =
e +
1) -

f B ,
-




...
fqB) at ,




Xe = e + (B) at

6(z) =
1
-
12 ...
-



gz = o



&

PACF decays exponentially

, &
Mixed autoregressive-moving average model
ARMA(p g)
·
d dx ApX - G,
,
EqAq :
xt = + + + ... +
-p
+ at ....


①o O(z)
b(z) y(B)at (2)
stationary if all roots of
7
lie outside unit circle, implying xx =
m
+
,
m
=



0)) ,
=
q(z)
((z)
3
invertible if all roots of f(z) lie outside unit circle, yielding # (B) x1 = co + at
,
20 =
0(1) ,
(2) =
f(z)


7
ACF decays exponentially
>
PACF decays exponentially
&
ARMA(p 1)
To avoid identification problems, reduce model to -1 ,
g
-




AR(p) MA(g) ARMA(p ,
g)
AlF deceases geometrically
,

pl I 1

for large l
11

decreases geometrically 0 for 2q



PACF ,
60 I I deceases geometrically
for large l
0 for expo decreases geometrically


8

Integrated processes: many time series are non-stationary, but may have stationary first differences

X-X
example is non-stationary, but is stationary, now 1( ) Xe -




is integrated of order d ( = ) if
Xt =
Xt -
1 + Et ,




hence
7 Xt
stationary vs integrated processes

now we applicate this to the ARMA(p g) model: ,
:
Xt =
00 + b , Xt -
1 + ...
+
6pXt p
+ at -

, at - - ...
-



Agat-q :
ApXt 0 Eat
xx d , Xt = + at ....
OgAq
-



p
-
-
....




((B)xt = 6 f(B) at
when this is non-stationary we could use differences
+




( (B)axx =
00 + f(B) at
(with roots ↓ (B) and &(B) outside unit circle)
>
autoregressive-integrated-moving average, ARIMA(p d g) , ,




example random walk (with drift if MF0 ) : Xt =

M
+ Xt -
1 + at



E(x0) Var(x)
xo
Mt aj this is non-stationary as Mt Var(xe) ot
= + = +
m
+ = +
,




but we can integrate to make stationary: AXt =

M
+ at




Suppose we have a time series, how do we then select the appropriate ARIMA model?
>
Box-Jenkins procedure: consists of servers steps
1



Identification /model selection: make initial guess of p, d and q, based on graphs and sample ACF and PACF

L
remember
sample ACF je jo
je i (x x)(xx z)
(xe )
Leung-Box Q-statistic
test
Hope
=


Haiplo Q(m) T(T 2) x (m)
=
+,
-




-
*
e -




3 =
0
,
=
+
<




~

sample PACF Ee] : obtain with OLS on Xt =
00 ,
2 +
d1 ,
2xt - ...
+ PhlXt 1 + elt




:
...
& l

or 2 .
l L




: i
= ...
I




Fre

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
maaikekoens Universiteit van Amsterdam
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
33
Lid sinds
4 jaar
Aantal volgers
0
Documenten
9
Laatst verkocht
4 weken geleden

4,5

2 beoordelingen

5
1
4
1
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen