100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting - Advanced Econometrics 2 (6414M0006Y)

Beoordeling
-
Verkocht
5
Pagina's
25
Geüpload op
27-09-2024
Geschreven in
2023/2024

Extensive summary of the course Advanced Econometrics 2.

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
27 september 2024
Aantal pagina's
25
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

X = Xi N(p . ) and 22 X (v) )
*

In all chapters before, we used asymptotic theory, ex CLT chi-square z - N(0 ,,



An alternative approximation is provided by bootstrap
Bootstrapping is used to estimate (by simulations), the sampling
X
distribution, by repeatedly sampling from the observed sample/data. The
2 approaches goal of bootstrapping is to make inference about a population, without
making strong assumptions about the underlying distribution.
I
Simple bootstrapping: draws asymptotic conclusions when theory is hard to implement
2
Bootstrap with asymptotic refinements: provides asymptotic refinements that lead to better approximations

notation
·
estimate
·
(yi xi) sample
wi =
,




S standard error
18-80)
t =

t-statistic
58


· Go
estimate under the null hypothesis

basics of bootstrapping
I
Simple bootstrapping
Suppose yi F(p 0)) -
,




F is a random population distribution ex. Normal or Chi-square
>




Hence real population F(m 8) ,




sample/bootstrap population Sy ya
>
, . . .
.,




bootstrap sample Syr, ] can generate B bootstrap sample (using
>
...,
*


ya
<




replacements ! )
N then we can calculate
1 B

*


mean of means: y *
=
Ba = 1
yb
I




variance of means: Var(j) =
B -

1, (yb -



y
*
)2
>
&




In general, for estimator ⑦ , we can use bootstrapping to estimate Var(8) , when analytic formulas
for Var (8) are complex. Such bootstraps are valid and have similar properties to estimates obtained
from the usual theory

2
Bootstrapping with asymptotic refinements
In some cases it is possible to improve on the simple bootstrapping and obtain estimates that may better
M



approximate the finite sample distribution of ⑦ , using refined asymptotic
I
theory

-




(8-00)

Until now we know the following from asymptotic theory (Taylor expansion): P No z -
=
P(z) + R ,


(z)((z)

We now look at Edgeworth expansion: p[n(f) (2
g ,




(2) R2 = + N +

, The Edgeworth expansion is a better approximation but difficult to implement theoretically. A bootstrap
with asymptotic refinement provides a simple computational method to implement Edgeworth expansion
N



For asymptotic refinement to occur, the statistic being bootstrapped must be an asymptotically pivotal
statistic
a statistic whose limit distribution does not depend on unknown parameters
>




Ex. yi F(p z) , depends on F, M and 82 . Then j
-
,
<
N(p . ), depends on M and 0.0M Under H =

Mo , the
i -



Mo
2


distribution still depends on , using SE(j) G 5 =
>
N(o 1) , we find pivotal statistic

bootstrap algorithm
step 1: we have the given data Ew wa] , draw a bootstrap sample & wi*, ...... , ....
wa
*
Y

step 2: calculate appropriate
(8 8)
statistics *
-




**
*



ex. S *,
=
S
*




step 3: repeat steps 1 and 2, B independent times and obtain ex. Y Es
* *



or A ti .... , ....




step 4: use these bootstrapped values to obtain a bootstrapped version of the statistics
ex. bias & , approximates E(0) 0 I
-




standard error SEboo(8) (8 8 ]
*

:
B-1 -




2-sided equal tail CI (8 -

A *.. EJIB + 1] SE(8) ,
8-fELB + ] SE(E)) An I ...
I Ass


bootstrapped p-value 2 min (5) . (1)


Example Co .
07 ,
0 . 031 ,
0 .
338 ,
1 .
690 ,
3 .
392 ,
0 411
.

,
0 .
479 ,
3 .
572 ,
0 .
637 ,
0 .
434
Ho Ha = 5 %
M
:
x
M vs 1 =
= 1
,





Bootstrap without refinement (when standard error is hard to determine)
X -
1 * -
1 1 .
100 -
1
&
5 :
SEboot N(o ,
1) ,
jobs :
seroot
=
0 . 399 =
0 .
251 ( -
0
,
1 .
96]u [1 .
96 ,
a)

E
Bootstrap with refinement
- S : ! (xi - x) -

further details about bootstrapping
Types of bootstrapping
In step 1 of the algorithm, we can use different kind of bootstrapping
&
Paired bootstrap/non-parametric bootstrap/empirical distribution function bootstrap: draw bootstrap
sample from Ew wa] with (yi xi) ,
,
. .
..
wit ,




*
Parametric bootstrap: draw randomly from F(xi , )
o
Residual bootstrap: bootstrap from the residuals ( .
,
. . .
,
un) , to get (ii, ....
*
n

, Optimal number of bootstraps
Bootstrap remains valid voor finite B, as it relies on N >




B (YB-Yo)/ % "
>
No ,
w)

quantity of interest 7 B =




quantity of interest
7




Rule of thumb: B =
3846




ex. standard deviation = (2 (g) w +

a(1 -
x)

symmetric two sided test/CI w = (22x24(2x)) Look at loss in power when choosing B, we find that
when testing choose B such that a(B 1) is an integer
+




Standard error estimation
When it is hard to estimate the standard error, we can do this using bootstrapping

SEB :
B ! ( *** ) 7 Bootstrap estimate of the standard error
<**B


As this bootstrap estimate is consistent, we can use it in place of 5




Hypothesis testing
Tests with asymptotic refinenement (8 00) -




note that the usual test statistic is N(o 1) T =
58
>
,




Yit is a pivotal statistic, hence it has potential for asymptotic refinement
>




percentile t-method: (E -00)

produce A ,* A using A .... ,
=
Sb
*




these values ordered from smallest to largest is used to approximate the distribution of
7 T



then we can specify the bootstrap critical values
"
*

H .
: 0 < 0 :

reject if t = A (x(B + 1))

Hi ((1 a)(B 1))
*

:
8 >
to :

reject if A2 t - +




(E(B 1)) )) -E)(B 1))
* *

H: At 00 :

reject if t = t + or t = t , +




Tests without asymptotic refinenement
8 -
Go

compute t SEBooT(f) and compare to critical value of standard normal distribution
I =




percentile method: find the lower * and upper * quantile of the bootstrap values
2 ** and
reject Ho if Do falls outside this region
reject Ho if fo is not contained in (8(B
> * 1) + 1 ,
( , -
E)(B + ,

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
maaikekoens Universiteit van Amsterdam
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
33
Lid sinds
4 jaar
Aantal volgers
0
Documenten
9
Laatst verkocht
4 weken geleden

4,5

2 beoordelingen

5
1
4
1
3
0
2
0
1
0

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen