100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

MiOO: Samenvatting Kwantitatief onderzoek

Beoordeling
-
Verkocht
-
Pagina's
26
Geüpload op
05-09-2024
Geschreven in
2021/2022

Dit document is een samenvatting van de hoorcolleges over kwantitatief onderzoek. Daarnaast is ook de informatie uit de Grasple lessen erin verwerkt. Op het einde is ook een samenvattende tabel met een; omschrijving, meetniveau, assumpties, etc. per analyse.

Meer zien Lees minder
Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
5 september 2024
Aantal pagina's
26
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

MiOO

Samenvatting tentamen 1

15/12/2021

Multipele Regressie

Doel multipele regressie:

- Waarde van iemand kenmerk voorspellen a.d.h.v. kennis over andere kenmerken
(deze kenmerken = predictoren)
- Oftewel: X1, X2, X3 (predictoren)  Y
o E = error: wat we niet vangen met de predictoren
- Geen uitspraken over causaliteit, maar het gaat om het voorspellen

Opstellen model  regressiemodel:

- Regressievergelijking = modelvergelijking voor de geobserveerde variabele Y:
o Uitkomst (Y) = model (X) + voorspellingsfout
o Y =b0 +b1 X 1 +…+ b6 X 6 +ⅇ
 Y = afhankelijke variabele (dependant variable)
 X = onafhankelijke variabelen/predictoren (independant variables)
 b 0 = intercept (constant)/a
 b 1 = regressiecoëfficiënt/slope
 ⅇ = voorspellingsfout/error/residual
- Regressie: bestaat uit puntenwolk  regressie: regressielijn door de puntenwolk tekenen
o Regressievergelijking beschrijft die lijn
o Best passende regressielijn volgens kleinste kwadraten criterium wordt beschreven
door de regressielijn
 Dakje = voorspelling
 Y ^ =b +b X
0 1 1
o Kleinste kwadraten criterium (least squares criterion)  zoek de lijn waarbij de
voorspellingsfout zo klein mogelijk is
 Iedere respondent heeft:
 Y = geobserveerde Y
 Y ^ = geschatte Y
 e = voorspellingsfout = Y −Y^
o Positieve e : onderschatting door model
o Negatieve e : overschatting door model
o e ’s zijn normaal verdeel met een gemiddelde van 0

Assumpties:

- Assumpties evalueren of de data realistisch is
- Assumpties van multipele regressie
o Onafhankelijkheid van waarnemingen (independence)
o Meetniveau variabelen:
 AV en OVs tenminste interval niveau
 OVs nominaal kan ook, maar via dummies
o Lineaire relatie tussen de AV en OVs

, o Afwezigheid multicollineariteit
o Normaal verdeelde residuen
o Homoscedasticiteit
o Afwezigheid outliers

Evaluatie statistische fit en praktische relevantie v/h model:

- = Hoe goed is de regressielijn?
- Goodness of fit
o R2 als maat voor de algehele modelfit
o R2 = determinatiecoëfficiënt = percentage (%) variantie verklaard door het model
s sm s sm
o R2= = = variantie verklaard door het model/totale variantie
s s t s s m+ s s R
o R interpretatie: hoeveel procent (%) v/d variantie in Y kan worden verklaard door
2

alle predictoren samen?
 R2 wil je zo groot mogelijk hebben  SSm en SSr gelijk aan elkaar
 0 = niks verklaard door het model; 1 = alles verklaard door het model
o R
2

 Klein: 0.01
 Medium: 0.09
 Groot: 0.25
- Kwadratensom (sum of squares)
o s s t = totale kwadraten som (totale SS) = som v/d gekwadrateerde
afwijkingen van geobserveerde scores tot het algemeen gemiddelde
 s s t =∑ ( y− y )2
 y = gemiddelde van alle y-waarden
 Baseline
o s s m = kwadraten som v/h model (model SS) = som v/d
gekwadrateerde afwijkingen van voorspelde scores tot het algemeen
gemiddelde
 s s m=∑ ( ^y − y )2
 Variantie verklaard door het model
o s s R = kwadratensom v/d voorspelingsfout (residual SS) = som v/d
gekwadrateerde afwijkingen v/d geobserveerde scores tot de
voorspelde scores
 s s R =∑ ( y− ^y )2
o Kwadratensom: s s t =s s m+ s s R
- Goodness of fit toets
o Algehele model: verklaren de predictoren samen variantie in Y?
 Hypothesen:
 H0: ρ2 = 0
 HA: ρ2 > 0
 Toets: F-toets
m sm s s m ∕ ⅆ f m
 Toetsingsgrootheid: F= =
m sR s sR ∕ ⅆ f R
 Als ρ < α  verwerp H0 en bepaal relevantie v/h effect

, o Welke predictoren zijn relevant?
 Toetsen v/d individuele predictoren
 Hypothesen:
 H01: β1 = 0
 HA1: β1 ≠ 0
 H02: β2 = 0
 HA2: β2 ≠ 0
 Toets: t-toets
β
 Toetsingsgrootheid: t=
SE ( β )
 Als ρ < α  verwerp H0 en bepaal relevantie v/h effect

Hiërarchische of sequentiële regressie:

- Predictoren toevoegen aan het model
- Stapsgewijs toevoegen van predictoren aan het model
- Kijken: zorgen predictoren in (significante) toename van verklaarde variantie met het eerste
model
- Delta = verschil
- Hypothesen:
o H0: ρ2 = 0
o HA: ρ2 > 0
- Vergeet niet te kijken naar de individuele toegevoegde predictoren



Multipele regressie (Grasple)

Dummy variabelen:

- Dichotome variabele – variabele die maar 2 waarden kan aannemen
- Om een dichotome variabele te gebruiken in een regressieanalyse moeten er getallen aan de
2 variabelen worden toegekend
o Categorie 0 = referentiecategorie (arbitraire keuze welke variabele)
- Intercept (b 0) is de voorspelde score van de referentiecategorie
o De voorspelde score is ook hetzelfde als het gemiddelde in die groep
- Richtingscoëfficiënt: verschil in voorspelde score tussen de 2 categorieën (als X 1 omhoog
gaat, hoeveel gaat Y omhoog )
o Positief: referentiegroep scoort gemiddeld lager dan de andere groep
o Negatief: referentiegroep scoort gemiddeld hoger dan de andere groep

Controle assumpties (initieel) bij regressieanalyse:

- Assumptie 1:
o De afhankelijke variabele is minimaal van interval niveau
o De onafhankelijke variabelen moeten minimaal van interval meetniveau zijn of
dichotoom (nominaal met 2 categorieën)
- Assumptie 2:
o Er moeten lineaire verbanden zijn tussen de afhankelijke variabele en alle
kwantitatieve onafhankelijke variabelen
€4,39
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
JuliaMelters Universiteit Utrecht
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
53
Lid sinds
2 jaar
Aantal volgers
27
Documenten
23
Laatst verkocht
3 weken geleden

4,1

8 beoordelingen

5
3
4
3
3
2
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen