100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

MFP1501 Assignment 2 (COMPLETE ANSWERS) 2024 - 18 June 2024

Beoordeling
4,8
(4)
Verkocht
15
Pagina's
16
Cijfer
A+
Geüpload op
11-06-2024
Geschreven in
2023/2024

MFP1501 Assignment 2 (COMPLETE ANSWERS) 2024 - 18 June 2024; 100% TRUSTED workings, explanations and solutions. for assistance Whats-App 0.6.7..1.7.1..1.7.3.9 ....................................... Question 1 Jacob and Willis (2003) outline hierarchical phases through which multiplicative thinking develops, which include one-to-one counting, additive composition, many-to-one counting, and multiplicative relations. Discuss each phase to show how best you understand it. N.B. It should not be the same. Be creative. (20) Question 2 In the Foundation Phase, multiplication is commonly introduced as repeated addition, that is, situations where several groups of the same size need to be added together. We usually ask questions such as: “How big is each group or how many groups? Provide five examples which are different from those in the study guide. (10) Question 3 You can teach doubling in the Foundation Phase in various ways. These approaches depend on the grade level you teach or what learners can or cannot do. It is important always to be responsive to your learners' cognitive level. It would be best if you always were moving learners to a more abstract level but using concrete apparatus to scaffold these moves. There are also a variety of diagrams for teaching doubling apart from using body parts as resources. 4 3.1 Identify two diagrams that you can use to teach doubling to the Foundation Phase. (4) 3.2 Motivate how you will use each diagram. Do not copy from the study guide (6) (10) Question 4 Kindly note that the “long division” method should be introduced only when learners fully understand the horizontal division process. The traditional long-division method is undoubtedly one of the most challenging algorithms for learners to understand. Many teachers struggle to teach it and many learners struggle to learn it! This method should, therefore NOT be introduced too early. 4.1 Apply the scaffolding approach to teach a Grade 3 learner how the following problems can be solved: 4.1.1 96 ÷ 20 (10) 4.1.2 728 ÷ 300 (10) 4.2 Design a learning activity in which you illustrate how you will teach division as a grouping. (10) 4.3 Differentiate between two situations of division using the table below as a guide Do not copy what is in the study guide (10) Division situation Problem structure Question asked Examples (40) Question 5 Most children find fractions very difficult to learn, and fractions are one of the topics in mathematics that many teachers teach poorly. 5.1 Identify difficulties which Foundation Phase learners may experience with fractions. (3) 5.2 Elaborate in detail how they experience difficulties with each of the difficulties you mentioned in 5.1 (9) 5.3 Certain pre-knowledge domains are necessary for developing a strong understanding of fraction concepts. Some of these knowledge domains include the following: equal sharing, partitioning, and unitising. Utilise the descriptions in the study guide to explain each of these knowledge domains. (6) 5.4 What should the Foundation Phase teacher do to support learners to realise that the more a unit is partitioned, the smaller the pieces you get?

Meer zien Lees minder
Instelling
Vak








Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
11 juni 2024
Aantal pagina's
16
Geschreven in
2023/2024
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

MFP1501
Assignment 2 2024
Detailed Solutions, References & Explanations

Unique number:

Due Date: 18 June 2024


QUESTION 1

One-to-One Counting

In the initial phase of one-to-one counting, children are primarily concerned with answering
the "how many" question by counting objects individually. They count in ones, which
indicates that they have a basic understanding of cardinality—the concept that a number
represents a specific quantity. However, the idea of grouping objects to make counting
more efficient or to understand multiplication and division remains foreign to them. At this
stage, even if they can recite numbers in sequences of 2s, 3s, or 5s, they revert back to
one-to-one counting when asked to determine the number of objects in a group. Their
understanding is limited to seeing counting as a temporary procedure rather than a
permanent indicator of the total quantity in a collection.


Terms of use
By making use of this document you agree to:
• Use this document as a guide for learning, comparison and reference purpose,
• Not to duplicate, reproduce and/or misrepresent the contents of this document as your own work,
• Fully accept the consequences should you plagiarise or misuse this document.


Disclaimer
Extreme care has been used to create this document, however the contents are provided “as is” without
any representations or warranties, express or implied. The author assumes no liability as a result of
reliance and use of the contents of this document. This document is to be used for comparison, research
and reference purposes ONLY. No part of this document may be reproduced, resold or transmitted in any
form or by any means.
€2,65
Krijg toegang tot het volledige document:
Gekocht door 15 studenten

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Beoordelingen van geverifieerde kopers

Alle 4 reviews worden weergegeven
1 jaar geleden

1 jaar geleden

1 jaar geleden

1 jaar geleden

4,8

4 beoordelingen

5
3
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
EduPal University of South Africa (Unisa)
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
149208
Lid sinds
7 jaar
Aantal volgers
35996
Documenten
4352
Laatst verkocht
2 uur geleden

4,2

13562 beoordelingen

5
7808
4
2689
3
1791
2
455
1
819

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen