100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting WISKUNDE voor bedrijfskundigen II bewijzen

Beoordeling
4,5
(4)
Verkocht
53
Pagina's
13
Geüpload op
18-05-2019
Geschreven in
2018/2019

Uitgetypt document van alle te kennen bewijzen van Wiskunde 2 (Academiejaar ). Gegeven door prof. Philippe Carette.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
18 mei 2019
Bestand laatst geupdate op
30 juli 2019
Aantal pagina's
13
Geschreven in
2018/2019
Type
Samenvatting

Voorbeeld van de inhoud

.




Wiskunde voor bedrijfskundigen II
Bewijzen




Handelswetenschappen
Academiejaar 2018-2019

,Bewijzen
1. Logistische groei ................................................................................................................................................. 1

𝑎 𝑏 𝑐
2. |0 𝑑 𝑒 | = 𝑎𝑑𝑓 ................................................................................................................................................ 2
0 0 𝑓

𝑎 0 0
3. |𝑏 𝑐 0| = 𝑎𝑐𝑓 ................................................................................................................................................. 2
𝑑 𝑒 𝑓

𝑎 𝑏 𝑎 𝑐
4. | |=| | .................................................................................................................................................. 2
𝑐 𝑑 𝑏 𝑑

𝑎 𝑏 𝑏 𝑎
5. | | = −| | .............................................................................................................................................. 3
𝑐 𝑑 𝑑 𝑐

𝑎 𝑏 𝜆𝑐 𝑎 𝑏 𝑐
6. |𝑑 𝑒 𝜆𝑓| = 𝜆 |𝑑 𝑒 𝑓 | ............................................................................................................................. 3
𝑒 ℎ 𝜆𝑖 𝑔 ℎ 𝑖

𝑎 𝑏 𝑎 𝑏
7. | |=| | ............................................................................................................................. 4
𝑐 + 𝜆𝑎 𝑑 + 𝜆𝑏 𝑐 𝑑

8. Stelling. 𝐴 heeft een inverse ⟹ 𝐴 regulier ( d.w.z. det(𝐴) ≠ 0) .................................................. 4

9. Stelling. Als 𝐵 en 𝐵′ inverse matrices zijn van 𝐴, dan 𝐵 = 𝐵′. ...................................................... 5

1
10. Als 𝐴 regulier is, dan is de matrix 𝐴−1 = det(𝐴) adj 𝐴 De enige inverse matrix van 𝐴............ 5


11. (𝐴𝐵)−1 = 𝐵−1 𝐴−1 ............................................................................................................................................... 6

1
12. (𝑟𝐴)−1 = 𝐴−1 ..................................................................................................................................................... 7
𝑟


13. (𝐴𝑇 )−1 = (𝐴−1 )𝑇 ................................................................................................................................................. 7

14. Karakteristieke vergelijking det(𝐴 − 𝜆𝐸𝑚 ) = 0. ................................................................................... 8

15. 𝐴𝑢 = 𝜆𝑢. ................................................................................................................................................................. 9


16. 𝐴𝑡 𝑣 = 𝑐1 𝜆1𝑡 𝑣1 + 𝑐2 𝜆𝑡2 𝑣2 + ⋯ + 𝑐𝑝 𝜆𝑡𝑝 𝑝 ................................................................................................ 10

d𝑓 (𝑥 ∗ ,𝑦 ∗ )
17. d𝑐
= 𝜆∗ ...................................................................................................................................................... 11

,  Logistische groei
Bewijs
Punt van snelste aangroei

 Uit D.V.
1 d𝑦 𝑦
= 𝑎 (1 − )
𝑦 d𝑡 𝑁

 Volgt Buigpunt? Via tweede afgeleide → 𝑦 ′′ =? Stel = 0

d𝑦 𝑦 𝑌
= 𝑎 𝑦 (1 − ) 1. 𝑦 ′ = 𝑎 𝑦 (1 − ) 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑟𝑒𝑔𝑒𝑙
d𝑡 𝑁 𝑁

𝑌 ↑ 𝑌 1
2. 𝑦 ′′ = [𝑎 𝑦 (1 − )] ⇒ 𝑎 [𝑦 ′ (1 − ) + 𝑦 (− ) 𝑦′]
 En dus ook (via de productregel) 𝑁 𝑁 𝑁
𝑌 𝑌
= 𝑎 𝑦 ′ [(1 − ) − ]
𝑁 𝑁
d2 𝑦 d𝑦 2𝑦 2𝑌
2
=𝑎 (1 − ) ′
= 𝑎 𝑦 (1 − )
d𝑡 d𝑡 𝑁 𝑁

↓ ↓ ↓
1. 2. 3.

Wanneer is het buigpunt nu nul?
1. 𝑎 kan niet 0 zijn. Het is een evenredigheidsconstante
2. 𝑑𝑦/𝑑𝑡 is een functie en de afgeleide kan nooit 0 zijn want de functie stijgt altijd (zie grafiek)
3. Blijft over, dus
2𝑌 𝑁
1− =0 ⟺ 𝑦=
𝑁 2


 Nuttige eigenschappen

1. Zijn alle elementen onder (boven) de hoofddiagonaal gelijk aan nul, dan is de determinant
gelijk aan het product van de elementen op de hoofddiagonaal.
2. Een determinant verandert niet als men het onderliggend getallenschema transponeert
(d.w.z. eerste rij wordt eerste kolom, tweede rij wordt tweede kolom enz.)
3. Als men 2 rijen (kolommen) onderling van plaats verwisselt, wijzigt de determinant van
teken.
Gevolg: Een determinant met twee identieke rijen (kolommen) is steeds gelijk aan nul.
4. Als men elk element van één rij (kolom) vermenigvuldigt met eenzelfde getal 𝜆, dan wordt
de volledige determinant met dit getal 𝜆 vermenigvuldigd.
5. Als men bij een rij (kolom) een veelvoud van een andere rij (kolom) optelt, dan verandert de
determinant niet.




1

,  Eigenschap 1

Zijn alle elementen onder (boven) de hoofddiagonaal gelijk aan nul, dan is de determinant gelijk
aan het product van de elementen op de hoofddiagonaal.

Voorbeelden

𝑎 𝑏 𝑐
Bewijs
 |0 𝑑 𝑒 | = 𝑎𝑑𝑓
0 0 𝑓

Bewijs: ⟶ ontwikkel rij 3

𝑎 𝑏 𝑐
|0 𝑑 𝑒 | = 0 ∙ 𝐴31 + 0 ∙ 𝐴32 + 𝑓 ∙ 𝐴33 ⟶ |𝑎 𝑏
| = 𝑎𝑑 − 0𝑏 = 𝑎𝑑 ⟶ 𝑓 ∙ 𝑎𝑑 = 𝑎𝑑𝑓
0 0 𝑓 0 𝑑

𝑎 0 0
|𝑏 𝑐 0| = 𝑎𝑐𝑓
Bewijs
𝑑 𝑒 𝑓

Bewijs: ⟶ ontwikkel kolom 3

𝑎 0 0
|𝑏 𝑐 0| = 0 ∙ 𝐴13 + 0 ∙ 𝐴23 + 𝑓 ∙ 𝐴33 ⟶ |𝑎 0
| = 𝑎𝑐 − 0𝑏 = 𝑎𝑐 ⟶ 𝑓 ∙ 𝑎𝑐 = 𝑎𝑐𝑓
𝑑 𝑒 𝑓 𝑏 𝑐

Deze eigenschap zegt specifiek dat dit enkel werkt met de hoofddiagonaal. (van linksboven naar
rechtsonder). Wat indien met de nevendiagonaal? (van rechtsboven naar linksonder).

0 0 3 ≠
Vb: |0 2 5| ≠ 1 ∙ 2 ∙ 3 = 6
1 −2 6

0 3
Kolom 1: = 0 ∙ 𝐴11 + 0 ∙ 𝐴21 + 1 ∙ 𝐴31 = 1 ∙ 𝐴31 = 1 ∙ | | = −6
2 5

 Eigenschap 2

Een determinant verandert niet als men het onderliggend getallenschema transponeert (d.w.z.
eerste rij wordt eerste kolom, tweede rij wordt tweede kolom enz.)
Transponeren = je wisselt rijen met kolommen en kolommen met rijen.
Voorbeeld

𝑎 𝑏 𝑎 𝑐
| |=| |
𝑐 𝑑 𝑏 𝑑
Bewijs Bewijs:


𝑎𝑑 − 𝑏𝑐 = 𝑎𝑑 − 𝑐𝑏

Bij andere ordes geldt dit ook, maar enkel van deze orde moet je het bewijs kennen.



2
€2,99
Krijg toegang tot het volledige document:
Gekocht door 53 studenten

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Beoordelingen van geverifieerde kopers

Alle 4 reviews worden weergegeven
2 jaar geleden

4 jaar geleden

4 jaar geleden

6 jaar geleden

4,5

4 beoordelingen

5
2
4
2
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
nicolasdewulf Universiteit Gent
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
257
Lid sinds
7 jaar
Aantal volgers
177
Documenten
0
Laatst verkocht
3 weken geleden

3,9

39 beoordelingen

5
13
4
16
3
7
2
1
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen