100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Lineaire Algebra - Hfst 8 Eigenwaarden en eigenvectoren

Beoordeling
-
Verkocht
-
Pagina's
2
Geüpload op
17-05-2024
Geschreven in
2023/2024

Hfst 8: Eigenwaarden en eigenvectoren gegeven door prof Willem Waegeman Deze samenvatting beslaat de cursus waaraan extra inzichten en bevindingen zijn toegevoegd + !!stappenplannen voor verschillende soorten oefeningen uit te werken!!

Meer zien Lees minder








Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
17 mei 2024
Bestand laatst geupdate op
10 juli 2024
Aantal pagina's
2
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Hoofdstuk 8
Eigenwaarden en eigenvectoren


Eigenwaarden en eigenvectoren
⃗ = 𝝀𝒙
𝑨𝒙 ⃗

▪ 𝐴𝑥 = lineaire transformatie met A de tranformatiematrix
▪ 𝑥 = eigenvector = intuïtief een vector die niet veranderd
▪ λ = eigenwaarde

Ga na of volgende vectoren eigenvectoren zijn van de matrix A

▪ Bereken 𝐴𝑥 en kijk of je het kan herschrijven als een scalair maal 𝑥 => 𝜆𝑥
▪ Meetkundige interpretatie:
o Beschouw de vector die je moet onderzoeken in het assenstelsel, als de nieuwe vector
gevormd door 𝐴𝑥 op de rechte ligt dat de oorsprong en de vector vormen, is het een veelvoud
en dus een eigenvector van A


Bepaal de eigenwaarden en eigenvectoren voor een gegeven A !!!goed beheersen

▪ 𝑨𝒙⃗ = 𝝀𝒙
⃗ met 𝒙
⃗ ≠ 0 dus de nuloplossing kan al niet
▪ 𝐴𝑥 – 𝜆𝑥 = ⃗0
▪ (𝐴 – 𝜆𝐼)𝑥 = ⃗0
▪ Dan de 𝑥 ’en zoeken zodat dit stelsel meer dan 1 oplossing heeft
Dus deze matrix mag NIET inverteerbaar zijn (anders heb je een unieke oplossing) → det = 0
▪ det(𝐴 – 𝜆𝐼) = 0 (op de hoofdiagonaal van A telkens – λ doen)
▪ Dit oplossen en zo bekom je uitdrukkingen voor 𝜆 = …. = de eigenwaarden
o Bij matrices groter dan 2x2 zal je moeten proberen rij/kolom ontwikkelen
o Probeer 0’en te creëren
▪ Nu alle eigenwaarden als gevallen beschouwen om de bijhorende eigenruimte met eigenvectoren
te bepalen
▪ ⃗ ] en rij herleidt deze matrix
Vul λ in, in de uitgebreide matrix [(𝐴 – 𝜆𝐼) 0
▪ 𝑥 = [oplossing] → parameterisatie en zo bekom je de eigenruimte = al de eigenvectoren voor die λ
= eigenruimte εA(λ) van die eigenwaarde λ
meetkundig kan je de eigenruimte als een lijn (1 vector) of als vlak (2 vectoren), …. Voorstellen
= alle eigenvectoren die in die ruimte zitten behorend tot die specifieke eigenwaarde, van A


De karakteristieke vergelijking pA(𝝀)

→ bevat de eigenwaarden van 𝑨 – 𝝀𝑰

Kan ontbonden worden in factoren van de eerste graad = de eigenwaarden, kan met multipliciteit 2 of meer


De eigenruimte εA(λ) van een eigenwaarde λ

= de verzameling van alle eigenvectoren bij λ

▪ De eigenruimte εA(λ) = N(𝑨 – 𝝀𝑰), de nulruimte van (𝑨 – 𝝀𝑰) met 𝝀 ingevuld


Algebraïsche multipliciteit αA(λ) = aantal keer dat λ als wortel in pA(λ) voorkomt

Meetkundige multipliciteit γA(λ) = de dimensie van εA(λ) = aantal vectoren die het opspant (na parameter)

▪ Als αA(λ) = γA(λ) VA L, dan is A diagonaliseerbaar met A = PDP-1 zie hfst 9

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
BioEngineer Universiteit Gent
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
75
Lid sinds
2 jaar
Aantal volgers
7
Documenten
76
Laatst verkocht
2 weken geleden
Bio Engineer Stach

Uitgebreide samenvattingen die telkens alles vanuit de powerpoint + extra in de les gezegd, bevatten. Daarbij probeer ik dit altijd op een overzichtelijke en mooie manier voor te stellen, want niemand heeft gezegd dat studeren saai moet zijn. Indien vragen, stuur gerust een bericht. Ik doe zelf ook nog bio-ingenieur en heb met deze samenvattingen altijd moeiteloos kunnen slagen.

4,0

3 beoordelingen

5
1
4
1
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen