100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Samenvatting Artificiële intelligentie voor iedereen

Beoordeling
-
Verkocht
5
Pagina's
57
Geüpload op
26-04-2024
Geschreven in
2023/2024

Dit document is een samenvatting van de modules 'Essentiële AI algoritmen voor niet-ingenieurs' en 'AI: methodologisch en ethisch kader' van het vak 'Artificiële intelligentie voor iedereen'. Dit document bevat alle informatie uit de presentaties en de bijbehorende kennisclips. Alleen de lezing over ChatGPT in het onderwijs is niet in de samenvatting verwerkt.

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
26 april 2024
Aantal pagina's
57
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Module 1: Essentiële AI algoritmen voor niet-ingenieurs

H1: Hoe werkt machinaal leren?
HOE WERKT MACHINAAL LEREN?
Hoe werkt het?
● Machine learning gaat over het leren van functies f(input) => output.
○ Verschillende types van functies (onderscheiden de verschillende scholen)
○ Verschillende types van data (supervised, unsupervised, reinforcement ...)
○ Verschillende criteria ( worden gekarakteriseerd door de verliesfunctie)
● Je wil de beste functie vinden m.b.t. die verliesfunctie en de data.
● Machine learning is eigenlijk automatisch programmeren
● Er zijn verschillende scholen in machinaal leren

De Ervaring / Data
● Leren uit voorbeelden (gesuperviseerd leren)
○ Goede/slechte zetten uit tekstboeken of van een leraar?
● Leren uit imitatie (Eng. behavioral cloning)
○ Imiteer de wereldkampioen
○ Ziet het gedrag van mensen en daaruit onderscheiden wat goed en slecht is
● Leren uit beloningen (bekrachtiging - reinforcement learning)
○ Speel het spel, beloning = gewonnen stukken/partijen
○ Leren uit trial en error
○ Het AI probleem in het klein
■ Leren uit bekrachtiging is moeilijk omdat je beweegt een bepaalde omgeving
en al doende moet je leren wat goed en slecht is

Leren uit beloning voorbeeld: Donald Michie’s Menace




● Menace
○ Een van de eerste lerende systemen
■ 287 doosjes en en elk doosje kwam overeen met een bepaalde bordsituatie
van het spel 'noughts and crosses’ en die machine moest leren goede
strategieën te bedanken voor dat spel
○ Machine = 287 “boxes” + parels
● Probabilistic functie
○ P(box, kleur) = waarschijnlijkheid van zet
■ Het aantal parels en de kleuren van de parels bepalen de waarschijnlijkheid
● Leer een functie

, ○ als je verliest: bewaar alle gebruikte parels
○ als je wint: plaats de gebruikte parels terug op hun plaats en voeg er een extra parel
van dezelfde kleur aan toe.
■ Richard Belmann: Q(s, a) = R(s, a) + P (s⇥|s, a) max Q(s⇥, a⇥)

De vijf scholen in ML




● De vijf scholen hebben te maken met de aard van de functie die je gaat leren en de aard van
de algoritmes die ze op de uitvoer gaan mappen

Dataset




Voorspel K = f(D,R,B), i.e., K als functie van D, R en B
● Een functie die uitgaat van D, R en B en gaat voorspellen of K al dan niet gekocht wordt door
klanten

1. Logica
● Een verzameling regels
○ ALS R = 1 EN B = 1 DAN K = 1
○ ALS R = 0 EN D = 1 DAN K = 1
○ ANDERS K = 0
● Een consistente verzameling regels bestaat niet altijd
○ D = 1 EN R = 1 EN B = 0 EN K=0
○ D = 1 EN R = 1 EN B = 0 EN K=1

Analogizers / Dichtste Buren
● Similariteit / Afstandsmaat / Kernels

, ● k- Dichtste Buren / Support Vector Machines




○ Punten stellen e-mails voor → zien of een nieuwe mail gewenst is door te kijken
bij welk puntje die het dichtst staat

Afstand




● Hoeveel gemeenschappelijke boeken hebben twee klanten gekocht en naarmate dat aantal
groter is, zal de afstand kleiner zijn en kan je dus voorspellingen doen
● De eenvoudige techniek voorspelt de klasse van de dichtste buur
● In de praktijk wordt vaak gekeken naar de 3 of 5 dichtste punten: hoeveel daarvan zijn
positief, hoeveel negatief → meerderheidsklasse vastgelegd

Probabilistisch / Bayesiaans






Naïeve Bayes

, Connectionists




● Connectionists = neurale netwerken
○ Invoerknopen in de neurale netwerken, in dit geval D, R en B (linkerzijde, input)
○ Uitvoer = K
○ Daartussen verborgen knopen
■ Daarop activatiefuncties → leeralgoritmes daarop loslaten




● Representation learning
○ Invoerzijde: beeld van een wagen → dat beeld wordt op een neuraal netwerk
voorgesteld doordat elke pixel een bepaalde waarde heeft (in dit geval rood, groen
of blauw) → tussenliggende lagen die telkens iets gaan berekenen uitgaande van
de vorige laag → einde: mogelijke classificaties (welk merk/type van wagen)
○ Representation learning = in de tussenliggende al een aantal belangrijke aspecten gaat
leren
● De tweede laag gaat al grenzen bekijken
● De derde laag gaat onderdelen voorstellen (wielen, …)
● De volgende laag gaat andere zaken op een hoger niveau bekijken
€11,89
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
ambervanemelen

Ook beschikbaar in voordeelbundel

Thumbnail
Voordeelbundel
Samenvattingen van het vak artificiële intelligentie voor iedereen
-
2 2024
€ 22,95 Meer info

Maak kennis met de verkoper

Seller avatar
ambervanemelen Katholieke Universiteit Leuven
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
5
Lid sinds
3 jaar
Aantal volgers
4
Documenten
4
Laatst verkocht
9 maanden geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen