100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Lineare Algebra Themen zusammenfassung

Beoordeling
-
Verkocht
-
Pagina's
20
Geüpload op
14-02-2024
Geschreven in
2023/2024

Ich habe alle Themen meiner Vorlesung nochmal selbst recherchiert und auf 20 Seiten simpel und verständlich zusammengefasst ich hoffe diese Blätter können jemandem helfen.

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
14 februari 2024
Aantal pagina's
20
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

-lineare Algebra !
Vektor
und
Ein Vektor
gibt Lange Richtung an, aber nicht den Startpunkt




-
↑ ·
-
·
i [8]
=




reeller Koordinatenraum



·ene
insupe istein
,

IRD2-oimensional -
alle moglichen reellen zweier Tupel


z3
C&
↳ Zahlen


(
von
reelle Zahlen
·
[O
&
W
2
=

Cer

③ 3-dimensional
IR -
alle moglichen reellen dreier Tupel
-
reelle zahlen




E = [8] xelR* x ist ein Teil von IR3


Vektoren addieren




·
I
a =
[i] 5 =
[i]

= + 4 =
(14) =
(2)

Skalarmultiplikation

a =
[i]

3 = 3(2) (3 : 3)
= =
[3] -




---
↑-
-
*




1

,
, Unterraume



I1 (t
Unterraume sind also

spezielle Teilmengen mit
Unterrektorraum von IRM


-&
zustzlichen algebraischen
VEIR
Vo
Teilmenge von IR
CEigenschaften .
C
--
M
&
I
o
·

Damit V ein Unterraum von IR" ist muss gelten :




↳ V beinhaltet den 0-Vektor []




2 Wenn ein Vektor * e V mit einem reellen Skalar




.




multipliziert wird dann
gilt ebenfalls EV
↳ unter skalarer Multiplikation
abgeschlossen

. wenn
3 ! -V und 5 EV dann muss
a + B - V

unter Vektoraddition abgeschlossen

Die Spanne von Vekloren bildet ebenfalls einen Unterraum, da die drei

Bedingungen erfillt sind
.


= Spanne ( , , 3)

I Nullvektor :
.
0 . + 0 .


Y + 0 . s
=
O

-
# .

Abgeschlossenheit multiplikation : G
.

V+ C + Cz .
- -
a a cs V
+ a c V, +
a C' V
= .




Y un *> bildet wieder
irgend
-




+
- -
+ eine Konstante
Cy C Vs
-
C Ve
.
.
.




# .



Abgeschlossenheit addition :
Y =
0. + 0 .


Y +
03 .

Us
>
-
x+ 4 (,) 4
=

1
.




,
+ ( + dz) .




Y +
(c 03)
+ .


Y

bildet wieder irgendeine Konstante
Basis eines Vektorraums
↓ Vektoren die zwei
spezielle Menge von , wichtige Eigenschaften erfillt :


I .
Erzeugenoensystem

oer Basisvektoren
jeder Vektor im Vektorraum kann als Linearkombination
-




dargestellt werden


ITerengi_ I
.




Das bedeutet, das die



&i3
Basis den gesamten f


I Linear.

unabhangig
j&
Vektorraum Ea ↳


E

↓ die Basisvektoren sind linear
unabhangig ,
was bedeutet, dass keine der
Basisvektoren als Linearkombination der anderen Basisvektoren dargestellt
werden kann

&
Die Anzahl der Vektoren in der Basis wird als die Dimension des Vektorraums bezeichnet .
E
€5,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
amralicina

Maak kennis met de verkoper

Seller avatar
amralicina Leibniz Universität Hannover
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
1 jaar
Aantal volgers
0
Documenten
1
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen