100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Complete lecture notes Research Methods in Psychology (PY2RMP)

Beoordeling
-
Verkocht
-
Pagina's
11
Geüpload op
24-12-2023
Geschreven in
2021/2022

Complete, concise, and accurate lecture notes summarising the key content from Research Methods in Psychology

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Onbekend
Vak

Documentinformatie

Geüpload op
24 december 2023
Aantal pagina's
11
Geschreven in
2021/2022
Type
College aantekeningen
Docent(en)
Dr dan jones
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

29/09/2021 PY2RMP – Lecture 1 research process



Significance levels e.g., a rejection region (α)

If the test value falls into the rejection region, the null is rejected & the alternative is accepted

p is the probability of finding the observed data due to chance

Replication reduces Type I errors

Sufficiently powered experiments reduces Type II errors



Sample only approximates the population – different sample will generate a different approximation

Each sample is an estimate as two cannot be true- can resample the distribution multiple times



11/10/2021 PY2RMP – Lecture 2 simple linear regression



Regression analysis – examine effects of a response variable on one or more observed variables –
how much of the variation by the observed variable can be explained by the response variable?

Regression models used for prediction – estimate values of Y using information about X – want the
regression model to fit closest to the actual data as possible

If using X to predict Y, you’re regressing Y onto X (Y = predicted/IV & X = predicting/DV)



Simple linear regression = single explanatory & response variable

Multiple regression = multiple explanatory variables on a single response variable (can
look at independent effect of each variable while adjusting others)



Simple linear regression: the straight line equation as a model for the relationship between variables

2 models of data – can use mean or regression line – can examine the error
of both models (how much data they miss) to compare which fits better



Describing a straight line:

Intercept – value
of Y when X = 0

Regression coefficient – gradient of line to show direction/strength of relationship

, Error term – tells us how far off the model was (don’t have to include in equation)

Calculating regression model – method of least squares & line of best fit

Method of least squares – minimises errors in the model (sum of squared error - how far the model
is from each data point)

Line of best fit – determine if it is actually ‘best’ for data as it is affected by outliers



How much of the original error estimation is eliminated by using the regression model vs the mean

SS Total – SS Residual = SS Explained = R 2

R2 = % product of variation accounted for by other potential predictors & chance

R2 measures the success of the regression model & indicates how much better DV can be predicted
from information about the observed values rather than just the DV mean

√2 R 2 = Pearson’s R correlation


Total variability – SST - deviation of individual data from Grand mean

Regression sums of squares – SSR – deviation of mean on Y from regression on model

Residual sums of squares – SSR – deviation of data from regression model

Residuals > 3 = outliers



If the regression model is a better predictor than the mean, expect SS M
(improvements due to model) to be greater than SS R (error in model)

= Pearson’s Correlation Coefficient squared when there is 2 variables



= Mean squares (averages) is linked to the ANOVA test



ANOVA test – tells us if overall model is highly significant/better than chance to predict variables

18/10/2021 PY2RMP – Lecture 3 multiple regression



Linear regression – approximating data as a straight line when the data is directly linked (assume y is
dependent on x)

Multiple linear regression – predicting the value of an outcome based on several predictors while
controlling other variables

ANOVA – test of variance & measure of how significant the regression model is as a better fit
compared to just using the mean to predict the value of the outcome
€9,48
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
imaangill22

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
imaangill22 University of Reading
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
2 jaar
Aantal volgers
0
Documenten
12
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen