Hoofdstuk 9: Impuls
Impuls = Een vectoriële grootheid gedefinieerd als ‘de impuls v/e voorwerp is het
product van zijn massa en zijn snelheid’ ofwel 𝑝⃗ = 𝑚𝑣⃗.
Opbouw v/d tweede wet van Newton in functie van impuls:
⃗⃗
𝑑𝑣 𝑑𝑝⃗ 𝑑𝑝⃗
- ∑ 𝐹⃗ = 𝑚𝑎⃗ = 𝑚 = . → ∑ 𝐹⃗ = .
𝑑𝑡 𝑑𝑡 𝑑𝑡
Behoud van impuls = De impuls, van 2 botsende voorwerpen, voor botsing is
gelijk aan de impuls na botsing ofwel 𝑚𝐴 ⃗⃗⃗⃗⃗ 𝑣𝐵 = 𝑚𝐴 ⃗⃗⃗⃗⃗
𝑣𝐴 + 𝑚𝐵 ⃗⃗⃗⃗⃗ 𝑣𝐴′ + 𝑚𝐵 ⃗⃗⃗⃗⃗
𝑣𝐵′ , de formule is
enkel geldig als er geen externe krachten werken.
Opbouw van behoud van impuls a.d.h.v. de wetten van Newton:
- Tijdens een botsing veronderstellen we dat de kracht die door een
voorwerp A op een voorwerp B op een willekeurig moment wordt
uitgeoefend gelijk is aan 𝐹⃗ . Volgens de derde wet van Newton geldt dan
dat de kracht die door het voorwerp B op voorwerp A wordt uitgeoefend
gelijk is aan −𝐹⃗ . Tijdens deze korte periode veronderstellen we dat er geen
andere externe/uitwendige krachten werken (of dat 𝐹⃗ zo groot is dat alle
andere externe krachten verwaarloosbaar zijn).
- Volgens de tweede wet van Newton in functie van impuls hebben we dat
⃗⃗⃗⃗⃗⃗
𝑑𝑝 ⃗⃗⃗⃗⃗⃗
𝑑𝑝 ⃗⃗⃗⃗⃗⃗
𝑑𝑝
𝐹⃗ = 𝐴 en dat −𝐹⃗ = 𝐵 ⇔ 𝐹⃗ = − 𝐵 .
𝑑𝑡 𝑑𝑡 𝑑𝑡
- Door deze krachten aan elkaar gelijk te stellen krijgen we dat
𝑑𝑝
⃗⃗⃗⃗⃗
𝐴 𝑑𝑝⃗⃗⃗⃗⃗
𝐵 𝑑𝑝⃗⃗⃗⃗⃗
𝐴 𝑑𝑝
⃗⃗⃗⃗⃗
𝐵 𝑑(𝑝
⃗⃗⃗⃗⃗
𝐴 + ⃗⃗⃗⃗⃗)
𝑝𝐵
=− ⇔0= + = .
𝑑𝑡 𝑑𝑡 𝑑𝑡 𝑑𝑡 𝑑𝑡
- Waaruit dus blijkt dat ⃗⃗⃗⃗⃗ 𝑝𝐵 = 𝑐 𝑡𝑒 en dus dat de totale impuls behouden
𝑝𝐴 + ⃗⃗⃗⃗⃗
blijft.
Opbouw van behoud van impuls voor systemen met een willekeurig aantal
voorwerpen:
- Veronderstel dat 𝑃 de totale impuls v/e systeem met 𝑛 voorwerpen is:
𝑛
𝑃⃗⃗ = 𝑚1 ⃗⃗⃗⃗⃗
𝑣1 + ⋯ + 𝑚𝑛 ⃗⃗⃗⃗⃗
𝑣𝑛 = ∑ ⃗⃗⃗⃗
𝑝𝑖 .
𝑖=1
- Dan kunnen we de afgeleide van 𝑃⃗⃗ in de tijd schrijven als
𝑛 𝑛
𝑑𝑃⃗⃗ 𝑝𝑖
⃗⃗⃗⃗
= ∑ = ∑ ⃗⃗⃗ 𝐹𝑖
𝑑𝑡 𝑑𝑡
𝑖=1 𝑖=1
met ⃗⃗⃗
𝐹𝑖 de netto kracht op het i-de voorwerp.
- Er zijn 2 soorten krachten
o Uitwendige krachten, deze worden van buiten het systeem
uitgeoefend op voorwerpen in het systeem.
o Inwendige krachten, deze worden door voorwerpen in het systeem
uitgeoefend op andere voorwerpen in het systeem.
1
, Volgens de derde wet van Newton komen de inwendige krachten in
krachtparen voor die elkaar telkens opheffen, hierdoor vallen de inwendige
krachten weg waardoor we kunnen stellen dat
𝑛
𝑑𝑃⃗⃗
= ∑ ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗
𝐹𝑢𝑖𝑡𝑤 .
𝑑𝑡
𝑖=1
Wet van behoud van impuls = Wanneer de netto uitwendige kracht op een
systeem van voorwerpen gelijk is aan nul, blijft de totale impuls v/h systeem
constant.
OF De totale impuls v/e geïsoleerd systeem van voorwerpen blijft constant.
Impuls blijft behouden in alle soorten botsingen, kinetische energie niet.
Elastische botsing = Een botsing waarbij de totale kinetische energie voor de
botsing gelijk is aan de totale kinetische energie na de botsing. →
1 1 1 1
𝑚 𝑣 2 + 2 𝑚𝐵 𝑣𝐵2 = 2 𝑚𝐴 𝑣𝐴′2 + 2 𝑚𝐵 𝑣𝐵′2 .
2 𝐴 𝐴
Opbouw v/d formule voor elastische botsingen in 1 dimensie:
- De formule voor behoud van impuls 𝑚𝐴 𝑣𝐴 + 𝑚𝐵 𝑣𝐵 = 𝑚𝐴 𝑣𝐴′ + 𝑚𝐵 𝑣𝐵′ en voor
1 1 1 1
elastische botsing 2 𝑚𝐴 𝑣𝐴2 + 2 𝑚𝐵 𝑣𝐵2 = 2 𝑚𝐴 𝑣𝐴′2 + 2 𝑚𝐵 𝑣𝐵′2 leveren ons samen 2
vergelijkingen op die we kunnen oplossen voor de snelheden na de botsing,
in de veronderstelling dat de massa’s en de snelheden voor de botsing
gekend zijn.
- Allereerst zonderen we bij beide vergelijkingen de massa’s af:
𝑚𝐴 (𝑣𝐴 − 𝑣𝐴′ ) = 𝑚𝐵 (𝑣𝐵′ − 𝑣𝐵 ) (1) en
1 1 1
𝑚 (𝑣 2 − 𝑣𝐴′2 ) = 2 𝑚𝐵 (𝑣𝐵′2 − 𝑣𝐵2 ) waarbij 2 dus wegvalt en we het
2 𝐴 𝐴
merkwaardig product uitwerken wat leidt tot
𝑚𝐴 (𝑣𝐴 − 𝑣𝐴′ )(𝑣𝐴 + 𝑣𝐴′ ) = 𝑚𝐵 (𝑣𝐵 − 𝑣𝐵′ )(𝑣𝐵 + 𝑣𝐵′ ) (2).
- We delen vergelijking (2) door vergelijking (1) (aangenomen dat 𝑣𝐴 ≠ 𝑣𝐴′ en
𝑣𝐵 ≠ 𝑣𝐵′ ) en bekomen 𝑣𝐴 + 𝑣𝐴′ = 𝑣𝐵 + 𝑣𝐵′ of nog verder uitgewerkt
𝑣𝐴 − 𝑣𝐵 = −(𝑣𝐴′ − 𝑣𝐵′ ).
Voor een eendimensionale botsing tussen 2 gelijke massa’s geldt:
- 𝑣𝐴 + 𝑣𝐴′ = 𝑣𝐵 + 𝑣𝐵′ (1) en zijn equivalent 𝑣𝐴 − 𝑣𝐵 = 𝑣𝐵′ − 𝑣𝐴′ (2).
- De snelheden na de botsing zijn
o (1) + (2) 2𝑣𝐴 = 2𝑣𝐵′ ofwel 𝑣𝐴 = 𝑣𝐵′ .
o (1) – (2) 2𝑣𝐴′ = 2𝑣𝐵 ofwel 𝑣𝐴′ = 𝑣𝐵 .
Voor een eendimensionale botsing tussen 2 ongelijke massa’s, waarbij het
aangestoten voorwerp zich in rust bevindt, geldt:
- Impulsvergelijking 𝑚𝐴 (𝑣𝐴 − 𝑣𝐴′ ) = 𝑚𝐵 (𝑣𝐵′ − 𝑣𝐵 ) met 𝑣𝐵 = 0 wordt
𝑚𝐴 (𝑣𝐴 − 𝑣𝐴′ ) = 𝑚𝐵 𝑣𝐵′ .
2
Impuls = Een vectoriële grootheid gedefinieerd als ‘de impuls v/e voorwerp is het
product van zijn massa en zijn snelheid’ ofwel 𝑝⃗ = 𝑚𝑣⃗.
Opbouw v/d tweede wet van Newton in functie van impuls:
⃗⃗
𝑑𝑣 𝑑𝑝⃗ 𝑑𝑝⃗
- ∑ 𝐹⃗ = 𝑚𝑎⃗ = 𝑚 = . → ∑ 𝐹⃗ = .
𝑑𝑡 𝑑𝑡 𝑑𝑡
Behoud van impuls = De impuls, van 2 botsende voorwerpen, voor botsing is
gelijk aan de impuls na botsing ofwel 𝑚𝐴 ⃗⃗⃗⃗⃗ 𝑣𝐵 = 𝑚𝐴 ⃗⃗⃗⃗⃗
𝑣𝐴 + 𝑚𝐵 ⃗⃗⃗⃗⃗ 𝑣𝐴′ + 𝑚𝐵 ⃗⃗⃗⃗⃗
𝑣𝐵′ , de formule is
enkel geldig als er geen externe krachten werken.
Opbouw van behoud van impuls a.d.h.v. de wetten van Newton:
- Tijdens een botsing veronderstellen we dat de kracht die door een
voorwerp A op een voorwerp B op een willekeurig moment wordt
uitgeoefend gelijk is aan 𝐹⃗ . Volgens de derde wet van Newton geldt dan
dat de kracht die door het voorwerp B op voorwerp A wordt uitgeoefend
gelijk is aan −𝐹⃗ . Tijdens deze korte periode veronderstellen we dat er geen
andere externe/uitwendige krachten werken (of dat 𝐹⃗ zo groot is dat alle
andere externe krachten verwaarloosbaar zijn).
- Volgens de tweede wet van Newton in functie van impuls hebben we dat
⃗⃗⃗⃗⃗⃗
𝑑𝑝 ⃗⃗⃗⃗⃗⃗
𝑑𝑝 ⃗⃗⃗⃗⃗⃗
𝑑𝑝
𝐹⃗ = 𝐴 en dat −𝐹⃗ = 𝐵 ⇔ 𝐹⃗ = − 𝐵 .
𝑑𝑡 𝑑𝑡 𝑑𝑡
- Door deze krachten aan elkaar gelijk te stellen krijgen we dat
𝑑𝑝
⃗⃗⃗⃗⃗
𝐴 𝑑𝑝⃗⃗⃗⃗⃗
𝐵 𝑑𝑝⃗⃗⃗⃗⃗
𝐴 𝑑𝑝
⃗⃗⃗⃗⃗
𝐵 𝑑(𝑝
⃗⃗⃗⃗⃗
𝐴 + ⃗⃗⃗⃗⃗)
𝑝𝐵
=− ⇔0= + = .
𝑑𝑡 𝑑𝑡 𝑑𝑡 𝑑𝑡 𝑑𝑡
- Waaruit dus blijkt dat ⃗⃗⃗⃗⃗ 𝑝𝐵 = 𝑐 𝑡𝑒 en dus dat de totale impuls behouden
𝑝𝐴 + ⃗⃗⃗⃗⃗
blijft.
Opbouw van behoud van impuls voor systemen met een willekeurig aantal
voorwerpen:
- Veronderstel dat 𝑃 de totale impuls v/e systeem met 𝑛 voorwerpen is:
𝑛
𝑃⃗⃗ = 𝑚1 ⃗⃗⃗⃗⃗
𝑣1 + ⋯ + 𝑚𝑛 ⃗⃗⃗⃗⃗
𝑣𝑛 = ∑ ⃗⃗⃗⃗
𝑝𝑖 .
𝑖=1
- Dan kunnen we de afgeleide van 𝑃⃗⃗ in de tijd schrijven als
𝑛 𝑛
𝑑𝑃⃗⃗ 𝑝𝑖
⃗⃗⃗⃗
= ∑ = ∑ ⃗⃗⃗ 𝐹𝑖
𝑑𝑡 𝑑𝑡
𝑖=1 𝑖=1
met ⃗⃗⃗
𝐹𝑖 de netto kracht op het i-de voorwerp.
- Er zijn 2 soorten krachten
o Uitwendige krachten, deze worden van buiten het systeem
uitgeoefend op voorwerpen in het systeem.
o Inwendige krachten, deze worden door voorwerpen in het systeem
uitgeoefend op andere voorwerpen in het systeem.
1
, Volgens de derde wet van Newton komen de inwendige krachten in
krachtparen voor die elkaar telkens opheffen, hierdoor vallen de inwendige
krachten weg waardoor we kunnen stellen dat
𝑛
𝑑𝑃⃗⃗
= ∑ ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗
𝐹𝑢𝑖𝑡𝑤 .
𝑑𝑡
𝑖=1
Wet van behoud van impuls = Wanneer de netto uitwendige kracht op een
systeem van voorwerpen gelijk is aan nul, blijft de totale impuls v/h systeem
constant.
OF De totale impuls v/e geïsoleerd systeem van voorwerpen blijft constant.
Impuls blijft behouden in alle soorten botsingen, kinetische energie niet.
Elastische botsing = Een botsing waarbij de totale kinetische energie voor de
botsing gelijk is aan de totale kinetische energie na de botsing. →
1 1 1 1
𝑚 𝑣 2 + 2 𝑚𝐵 𝑣𝐵2 = 2 𝑚𝐴 𝑣𝐴′2 + 2 𝑚𝐵 𝑣𝐵′2 .
2 𝐴 𝐴
Opbouw v/d formule voor elastische botsingen in 1 dimensie:
- De formule voor behoud van impuls 𝑚𝐴 𝑣𝐴 + 𝑚𝐵 𝑣𝐵 = 𝑚𝐴 𝑣𝐴′ + 𝑚𝐵 𝑣𝐵′ en voor
1 1 1 1
elastische botsing 2 𝑚𝐴 𝑣𝐴2 + 2 𝑚𝐵 𝑣𝐵2 = 2 𝑚𝐴 𝑣𝐴′2 + 2 𝑚𝐵 𝑣𝐵′2 leveren ons samen 2
vergelijkingen op die we kunnen oplossen voor de snelheden na de botsing,
in de veronderstelling dat de massa’s en de snelheden voor de botsing
gekend zijn.
- Allereerst zonderen we bij beide vergelijkingen de massa’s af:
𝑚𝐴 (𝑣𝐴 − 𝑣𝐴′ ) = 𝑚𝐵 (𝑣𝐵′ − 𝑣𝐵 ) (1) en
1 1 1
𝑚 (𝑣 2 − 𝑣𝐴′2 ) = 2 𝑚𝐵 (𝑣𝐵′2 − 𝑣𝐵2 ) waarbij 2 dus wegvalt en we het
2 𝐴 𝐴
merkwaardig product uitwerken wat leidt tot
𝑚𝐴 (𝑣𝐴 − 𝑣𝐴′ )(𝑣𝐴 + 𝑣𝐴′ ) = 𝑚𝐵 (𝑣𝐵 − 𝑣𝐵′ )(𝑣𝐵 + 𝑣𝐵′ ) (2).
- We delen vergelijking (2) door vergelijking (1) (aangenomen dat 𝑣𝐴 ≠ 𝑣𝐴′ en
𝑣𝐵 ≠ 𝑣𝐵′ ) en bekomen 𝑣𝐴 + 𝑣𝐴′ = 𝑣𝐵 + 𝑣𝐵′ of nog verder uitgewerkt
𝑣𝐴 − 𝑣𝐵 = −(𝑣𝐴′ − 𝑣𝐵′ ).
Voor een eendimensionale botsing tussen 2 gelijke massa’s geldt:
- 𝑣𝐴 + 𝑣𝐴′ = 𝑣𝐵 + 𝑣𝐵′ (1) en zijn equivalent 𝑣𝐴 − 𝑣𝐵 = 𝑣𝐵′ − 𝑣𝐴′ (2).
- De snelheden na de botsing zijn
o (1) + (2) 2𝑣𝐴 = 2𝑣𝐵′ ofwel 𝑣𝐴 = 𝑣𝐵′ .
o (1) – (2) 2𝑣𝐴′ = 2𝑣𝐵 ofwel 𝑣𝐴′ = 𝑣𝐵 .
Voor een eendimensionale botsing tussen 2 ongelijke massa’s, waarbij het
aangestoten voorwerp zich in rust bevindt, geldt:
- Impulsvergelijking 𝑚𝐴 (𝑣𝐴 − 𝑣𝐴′ ) = 𝑚𝐵 (𝑣𝐵′ − 𝑣𝐵 ) met 𝑣𝐵 = 0 wordt
𝑚𝐴 (𝑣𝐴 − 𝑣𝐴′ ) = 𝑚𝐵 𝑣𝐵′ .
2