100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Math 100 UBC/UBCO full course notes 20+ pages

Beoordeling
-
Verkocht
-
Pagina's
22
Geüpload op
14-05-2023
Geschreven in
2022/2023

From start to finish MATH 100 notes with practice problems and examples 20+ pages full of notes and graphs and examples. ORGANIZED.

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
14 mei 2023
Aantal pagina's
22
Geschreven in
2022/2023
Type
College aantekeningen
Docent(en)
Wayne broughton
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

MATH108

101

, ↑ AF(z) 1 % % with wasne.D

TUESDAY JC 10 Introduction
-
to limits


-> pre-cpic review:


1. Given that x=2 is of
proot x3-x-2x+12. factor the polynomial completely and findall i ts roots
of
-

>Che(R: 23 22
- -
8(2) 12 +
X-2 is a f (( +0r


8
= -

4 -
16 12
+ -
x3 -
x" -
8X 12 +
(X
= -
2)(X +x -
6)

(x -
2) (x + 3) (X -
2) The roots are x 1
=

andX = -
3




2.x z
-



x2 +1 -



- rte1)

4(x- ( -
1)- xe
(X
- -
-




2
x -
1




>12 -
2x 1+
-
y2 -
1
=



-
2X

xz - 1 xz -
1




3. Find the equation of
t he line that
p asses through the points (2,5) and 1-1, 2) in the plane
xx

5-1
Findslope
=
->

2 -
1 -
1)

following:y-Y' m(X X')

= -




-> y 3/2X 6
=
+


y
- -
3 3/2(X 2)
= -




3/2X
=
-

3 5 +




1 3/2x 2
=
= +




4. Findthe exact value of COS(-π /6)
7 L
68
2
v 45
=1880:300 using special triangle
=




2452
1

v/2 38
13 1




THURSDAY, JAN 12:PRECALL & INTROTO CALC


1

1: X X 8
=
REFRESHON BASIC GRAPHS

shifted sin (X) graph
M




L
Shifted COS(X) grOPM Y:COS(X) Domain:x0 or



1.Sin (X)
(0,0)u(0,p)

EcosixOY ↳ <
1 >




*
-




2



-
- 1




1:109eX:10n 1


y: 109 - XM Y:109 X
> 7
[0,0 1 -
1 Exponential fxn: y.e*
1 ⑲
Xx,0 ④

&
i
U:104b(V)


V =bu




·finan
piecewise fXn
>




9
Y :(X/,0 ·
(x) X,X>,0

D:( -8,0) Range:1R -

X, ifX <0
↳(0,0
Y: arc an(X)
+




#
I tan(x) 20 (X)
= +

,-> calculus:single variable -> differential (aboutr ates change) the
of main concept is the derivative


·unifiying theme:limits


Limits:Chapter 2 Introducing limits
~If itisitwill
-> -> cause the answer



·consider y f(x) xx 1 x 1 = what is f164)?
:=I 3 i s the
what domain t he
of flx)? x, andx*I
- = -
=
=




x5 -
5x 3 -
1

<(0,1) UC2, 0) - know how to write/readinterval notation


o The graph of this fan seems to keep going
through x 1
=

(where its under), o f(x) near
lets 100k x 1
=




+ (0.9):80.9-1=1.48698.... -> a bit bigger f(1.1) 1.51203=
or even closer to 1 f(0.99):1.490743/f (1.01):1.501245 (f(0.9999):1.499988
29-1
f(1.00001):1.50003// As x gets closer to 1 the fan gets closer to 1.5


· s eems that f(x) is
It getting closer to 1.5 as s ets
x closer to 1:this is the behavior f (x) nedr
of 1
x=


mathematically) we can make f(x) as close
This turns out to be true (can be proved
->
to 1.5 as we want close) if we use
carbitrarily any X value "close


enough"to 1 limit notation


We say the
*
o f f(x):x-1
limit is 1.5 as x approaches 1 im f(x):1.5
x 1
"3-1
->




x
or we can write it out as f(x)-1.5


CS X -
1


7/3 25
-> Now consider f(x) for near
x x 64 f(64)
we know that is or so what
doesMyfex) mean
-
=




of (63.9):2.33287 1 + (63.99999):2.3333287 (f(64.00001):2.333379

25 =
tyMyf(x):
It looks like f(x) is getting
arbitrarily
close to as x is getting close to 64 2


5 253 same
(imf(x) f(64): question
answer, different
so 2
= =




TUESDAY JAN #3
17:LECTURE

LIMITS:CIP1.2 -> Instantaneous velocity

-> If I travel 8 0km/h
at for 1 hr, then I have gone 80km. or i travel 160km in 2 hours, or in one minitravel 800 8/6km
=




over time period:distance travelled
>velocity
time taken




0 What does m ean
it to be going 80
at km/h at one point in time (an instant)?


I
travel a distance in time so v =

Ca "
-> We lookata time interval around instant:
that >t


we can define aus velocity:a travelled on thatinterval = change in position
length of time change in time




As
* interval
that gets shorter & shorter, the due velocity
a pproaches a limit
value -> t he
That limiti s the instantaneous velocity
-




CLP-1:1.3 - EXPLORING LIMITS


taking enough"to the (x+a)
0ximf(x)=L:means we can make f(x) as close to (as we like ("arbitrarily
close"), by X "close a
value of




-.
-
AMPLE:
Dimsincx), since is defined
not at 10bc is



sincxl
-> x X sin(0.1) 0.998334.....
=

3 i n trig fans is in radians
in calculus, we assume x
0.10.448334 8.2




Whatifwe use -0.1: same:0.998334


0.01:0.999983 -
8.82:0.99999....
I It180ks like
MMsincx)
y
X
= 1 This turns out to be true!




2(1m(x+2): in
we plug
cant x 2 Yes we could (and is the rightanswer), but limit
w hat
t hats not
-
=




means


↳ 1.999:(1.999) +2 5.996001:It100ks like =




imz (x+ 2) is the same as 22 +

2 6 =




-mes Dlim doesnt
exist


EG#3) Le f(x) +
sin),
=

for x is
=O- what
limo sin(i)? H(t)




I
SAS x =
0, gets larger (+ or -- so sink) oscillates faster faster btwn-1 and 1


so
him sin(i) DNE:sin(A) does not "settle down"close to one value justkeeps
it jumping again
away
1


4) "Differentvalues on the sizes
left andright -> H(t):
Let

Goit 1 if
+ co


t >I
-
t
8

H:heavyside txn
€14,28
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
femkaotto-babin

Maak kennis met de verkoper

Seller avatar
femkaotto-babin UBC
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
2 jaar
Aantal volgers
0
Documenten
8
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen