100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

The 81st William Lowell Putnam Mathematical Competition, 2020

Beoordeling
-
Verkocht
-
Pagina's
22
Cijfer
A
Geüpload op
27-04-2023
Geschreven in
2020/2021

The William Lowell Putnam Mathematics Competition Is a North American math contest for college students, organized by the Mathematical Association of America (MAA). Each year on the first Saturday in December, several thousands US and Canadian students spend 6 hours (in two sittings) trying to solve 12 problems. This past papers content problems and solutions.

Meer zien Lees minder
Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Vak

Documentinformatie

Geüpload op
27 april 2023
Aantal pagina's
22
Geschreven in
2020/2021
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

William Lowell


maa.org/putnam
PUTNAM
Mathematical Competition
Problems for
Session A

The 81st William Lowell Putnam Mathematical Competition

, William Lowell


maa.org/putnam
PUTNAM
Mathematical Competition
Problems for
Session B

The 81st William Lowell Putnam Mathematical Competition

, A1. How many positive integers N satisfy all of the following three conditions?
(i) N is divisible by 2020.
(ii) N has at most 2020 decimal digits.
(iii) The decimal digits of N are a string of consecutive ones followed by a string of
consecutive zeros.
Answer. 504 · 1009 = 508536.
Solution 1. A positive integer N satisfying (iii), with j ones followed by k zeros, has the
form
10j − 1
N= · 10k
9
where j ≥ 1, k ≥ 0, and j + k ≤ 2020. Note that 2020 = 20 · 101, so to satisfy (i) the integer
N must be divisible by 101 and end in at least two zeros (so k ≥ 2). If 101 divides N then 101
divides M = 10j − 1. A quick check shows that M ≡ 0, 9, 99, 90 mod 101 when j ≡ 0, 1, 2, 3
mod 4. Consequently, 4 must divide j. (One can see directly that the conditions k ≥ 2, 4|j
are necessary and sufficient by noting that 101 divides 1111 but not 1, 11 or 111.)
If j = 4m, then for N to satisfy (ii) also, we need 2 ≤ k ≤ 2020 − 4m, for a total of
2019 − 4m possible values of k. The total number of integers N satisfying all the conditions
is therefore
504
X 504 · 505
(2019 − 4m) = 2019 · 504 − 4 · = 504 · (2019 − 1010) = 504 · 1009 = 508536.
m=1
2

Solution 2. As in the first solution, it is straightforward to show that the acceptable
numbers N are those for which there are at most 2020 decimal digits, consisting of j ones
with 4|j followed by k zeros with k ≥ 2. By introducing additional “phantom” digits z
at the beginning of the number, we can convert it to a string of length exactly 2020 of
the form zzz · · · z111 · · · 1000 · · · 0. We now show that the set of such strings is in bijective
correspondence with a set of size 1009

2
= 508536. To see this, remove the final two zeros
from the string, and group the remaining 2018 positions in the string into consecutive pairs.
Then any choice of 2 of these 1009 pairs corresponds to a unique string of the desired form,
as follows. If the two chosen pairs have an even number of pairs between them, put a z in
each position before the first chosen pair, put 11 for each of the chosen pairs and all pairs in
between, and put a 0 in each position after the second chosen pair, for example:

xx |{z}
|{z} xx |{z}
xx |{z}
xx |{z} xx · · · 7→ zz | 11 | 11 | 11 | 11 | 00 · · · .
xx |{z}
Choose Choose

If the two chosen pairs are separated by an odd number of pairs, do the same except for
replacing the chosen pairs by z1 and 10, respectively, for example:
xx |{z}
|{z} xx |{z}
xx |{z} xx · · · 7→ zz | z1 | 11 | 10 | 00 · · · .
xx |{z}
Choose Choose

Note that in either case, the resulting number of ones is divisible by 4. Erasing the digits
z and restoring the two zeros that were removed at the end of the string, we get every
acceptable number N exactly once from some choice of 2 of the 1009 consecutive pairs.
€3,09
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
tandhiwahyono
2,0
(1)

Maak kennis met de verkoper

Seller avatar
tandhiwahyono University of Indonesia
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
8
Lid sinds
3 jaar
Aantal volgers
8
Documenten
861
Laatst verkocht
1 jaar geleden
iKnow

The iKnow store provides course materials, study guides, study notes, lecture notes, textbook summaries and exam questions with answers, for levels from high school students to universities and professionals. Everything with the best quality and world class.

2,0

1 beoordelingen

5
0
4
0
3
0
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen