100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Bio-Imaging

Beoordeling
-
Verkocht
2
Pagina's
25
Geüpload op
31-01-2023
Geschreven in
2022/2023

A 25 page summary of the entire course based on the slides from the lectures and the course notes (booklet)










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
31 januari 2023
Aantal pagina's
25
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Bio-Imaging and Image informatics
INTRO
. Positron emission tomography (PET)  high Energy Ɣ-rays  1-2 mm Spatial reso
. Magnetic resonance imaging (MRI)  radiowaves  25-100 μm SR
. Computed tomography (CT scans)  X-rays  50-200 μm SR
. Ultrasound  high-freq sound  50-500 μm SR
. Optical Fluo Microscopy  visible, infrared light  < 1 mm SR

CHAP_3 : Concept of optics and light
. Dual nature light  p° sometimes acts like a wave(Huygens, Young)/particle(Newton)
 Particle: Photoelectric effect -> light eject electrons (only certain wavelengths, indep of Intensity)
 Wave: Young -> light between 2 // slits -> light waves interfere -> dark and light bands = diffract°




. 4 main laws optics: 1) straight propagation light. 2) independency light beams. 3) Reflect° 4) Refract°
c
. Refraction: refraction index (medium) = n= = ratio speed light (vacuum) - speed light (medium)
v
 Free space: n = 1 ; Air : n = 1.0003 ; Water : n = 1.33 ; Glass : 1.66 ; Greater n = lower speed light
 Greater/lower n = lower/greater speed of light = light ray bent toward/away the normal (nr>ni)
 Snell’s law :  Angles measured with respect to surface normal

. Specific cases (higher->smaller) :
 θi = 0°  no diffraction
 θi = θcrit  bend 90° away normal (travel btween 2 interfaces)
 θi > θcrit  total reflection

. Thin lens = ideal lens  converging/+ or diverging/- (fct° of curvature)
 Focal points F => // beams focused on F (+) ; projection of // beams focused on F (-)
 Beam pasing by center lens not diffracted ; beam passing by F becomes // to axis after lens
 F_dist depend on concavity  the more concave, the shorter F_dist
 Plane wave fronts  converging spherical wave fronts (+) / diverging spherical wave fronts(-)
=> light slower in lens medium than air => thicker parts retard light.
1 1 1
 Lens formula: + = => where p = dist_obj/lens ; q = dist_im/lens ; f = focal dist (all>0)
p q f
siz e ℑ q
 Magnification M = =
siz e obj p
 Lens system = more than 1 => im from 1st lens = obj second lens ; Mtot = Mlens1 . Mlens2 (µscope)
 Real image  im other side lens, inverted (obj after F)
Virtual image  im same side obj, not invert, bigger (obj btween F and lens)




. 2 syst of lenses in microscope = objective + eyepiece (Mtot = Mobj.Mep)

,  Objective : infinity corrected => // beam after objective => tube lense => intermediate real im
 Eyepiece (ep) : im from objective put btween F_ep and ep => big virtu im >>> obj
. Light = electromagnetic wave (2 components = E + B => amplitude = intensity, wavelength, freq, ..)
 . c= λ . ν : where c = speed light ; λ = wavelength ; ν = frequency
 E( r ,t)=E 0 . cos ¿
2 2 πc
where k = . û where 𝒖̂ = unit vector (direct° propagat°) ; ¿
λ λ
 Diffration = wave spread out after going through small holes/corners (opening±= λ ).
= deviat° geometrical optics due to obstruct° of wave front of light by obstacle/opening
 Princip of superposit° : Yres = Y1 + Y2 (constructive/destructive interferences, period important!!)
 Huygens’ wavelets (no physical basis) : Every pt on a known wave front can be treated as a pt
source of wavelets (= small spherical waves “bubbling” out of the pt) which spread out in all
direct° with a wave speed characteristic of medium. The developing wave front @ any t is the
envelope of these advancing spherical wavelets.

. Young’s double-slit interference experiment :
 Light from both slits is coherent => fixed phase relationship btween waves from both sources.
 Light from both slits same wavelength
λ
 The nth bright frange on screen is @ angle : θn = n . (n = 0,1,2,3,..)
d
 Position of bright/dark fringes : y(B)= m(sλ/a); and y(D)= (m+1/2)(sλ/a)

. Diffraction-Limited Optics => lens diameter D = large circular aperture => focused spot not a point !
 Diffract° pattern = Airy pattern = bright disk @ center (airy disk) + dark and bright rings around
 Caused by diffraction or scattering of light through specimen + circular aperture objective.
. Resolution of a microscope = dist up to which 2 small obj seen as separate entities
 smallest resolvable dist btween 2 pts cannot be smaller than half the wavelength of imaging light
 (Abbe) => Resolution ↑ if d ↓ = NA ↑ = λ ↓ (Attent° ROS)(Approx : d=200nm)

 Alpha = half-angle of the maximum cone of light that can enter/exit obj lens ; n = refraction index

. Other resolution’s criteria based on dist where :
λ
 Rayleigh => max of one Airy pattern intercepts with 1st min of other Airy pattern => d = 0.61
NA
 Full width half max => Both Airy pattern intensity profiles intercept @ points corresponding to 1⁄2
λ
of the maximum intensity @ the center of Airy disk : d = 0.51
NA
λ
 Sparrow => no dip in the intensity of image : d = 0.47
NA
1.22 λ
. Most general expression for resolut° limit => d = NA + N a
obj cd
 consider NA from lenses of condenser (condense light on speci)/objective (receive light speci)

CHAP 4 : Concept of microscope
. 4 major blocks : Lens+mirrors / objectives / light sources / Detectors
1) Mirrors : reflecting light from the lamp to eye/camera => compactness microscope
Lenses : Condenser lens => illumination cone on specimen => objective lens

2) Objectives : Primary image formation => central rôle for quality :
 Compensate for cover glass thickness variat° ; Increase effective working distance ;
Project a diffraction-limited image at a fixed plane (= intermediate image plane)
 Today : infinity corrected objectives => // beam after objective => allow to choose tube length !!
€7,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
CVSTICHE

Maak kennis met de verkoper

Seller avatar
CVSTICHE Universiteit Gent
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
2
Lid sinds
2 jaar
Aantal volgers
0
Documenten
1
Laatst verkocht
11 maanden geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen