FYSICA
DEEL 1: BEGRIPPEN UIT KLASSIEKE MECHANICA
HOOFDSTUK 1: KINEMATICA
Inleiding
• Kinematica = leer vd bewegingen zonder oorzaken
beschrijving v beweging
• Beweging is relatief
Vectoren
• Scalairen en vectoren
o Scalaire grootheden <--> vector grootheden
o Voorstelling vector: pijl
o Notatie: AB, r
o Grootte of absolute waarde: |AB| of AB of |r| of r
GEEN GWNE ALGEBRAÏSCHE REKENREGELS VOOR VECTOREN
verplaatsing ≠ lengte
• Plaatsbepaling
o Oorsprong O kiezen
o Assenstelsel kiezen: driedimensionaal: orthogonaal rechtshandig assenstelsel
o Lokalisatie v punt: via coördinaten x, y, z
via plaatsvector r
o Plaatsverandering: beschreven door verplaatsingsvector AB en voorgesteld door pijl,
pijlpunt geeft zin aan
o Baan: verzameling v punten die lichaam doorloopt tijdens beweging
o VERPLAATSING VALT NIET NOODZAKELIJK SAMEN MET BAAN
• Ontbinden v vectoren in componenten
o Componenten: projecties v vector op assen v coördinatiestelsel
o 2 dimensionaal:
o Eenheidsvector:
o 3-dimensionaal: componenten v vector a langs x-, y- en z-as: ax, ay en az
• Som en verschil v vectoren
o Grafische methode:
▪ Som Verschil
, o Algebraïsche methode: optellen v vectoren met componenten
• Product met vectoren
o Product v scalair met vector
▪ Getal k en vector a: ka
o Scalair product v 2 vectoren
▪ a . b = abcosφ
▪ Scalair product = scalaire grootheid
▪ Indien vectoren a en b evenwijdig zijn: a . b = ab
▪ Indien a loodrecht op b staat: a . b = 0
o Vectorproduct v 2 vectoren
▪ axb=c
▪ nieuwe vector c
→ grootte c = absinφ met φ kleinste hoek om v a nr b te draaien
→ richting: staat loodrecht op vlak bepaald door a en b
→ zin: gegeven door regel v kurkentrekker toe te passen bij draaiing over
kleinste hoek v a nr b
▪ indien vectoren a en b evenwijdig zijn: |a x b| = 0
▪ indien a loodrecht staat op b: |a x b| = ab
Snelheid en versnelling
• Snelheid
o Volgen we baan v deeltje
o Indien deeltje op tijdstip t1 zich bevindt in punt P1 met plaatsvector r1 en even later
op tijdstip t2 in punt P2 met plaatsvector r2, dan wordt verplaatsingsvector gegeven
door:
o Tempo waarmee plaats v deeltje verandert in tijd
o Gem snelheid:
o Ogenblikkelijke snelheid v1 v stoffelijk punt op t1 in r1
o Algemeen:
o Snelheid = afgeleide v plaatsvector nr tijd
o Snelheid: vector met grootte en richting rakend aan baan
, o Dimensie: lengte per tijd
o Eenheid: m/s
o Richtingscoëfficiënt v rechte lijn tss P1 en P2 : gem snelheidsvector
o v = 0 wnr raaklijn horizontaal
• versnelling
o versnelling = tempo waarmee snelheid v deeltje/lichaam verandert in tijd
o volgen we baan v deeltje: op tijdstip t1 bevindt deeltje zich in punt P1 met snelheid
v1 en even later op tijdstip t2 in punt P2 met snelheid v2
o verandering in snelheid over tijdsinterval (t1, t2):
o gem versnelling over tijdsinterval (t1, t2):
o
o Ogenblikkelijke versnelling a1 v deeltje op t1 in A bekomt men door limietovergang t2 → t1
o Algemeen:
o Versnelling: afgeleide v snelheidsvector nr tijd
o Versnelling is vector met grootte en richting raken aan ‘hodograaf’
o Hodograaf = fictieve baan v snelheidspunt
o Dimensie: lengte per tijd2
o Eenheid: m/s2
o Richtingscoëfficiënt v helling = gem versnelling in t
o Helling = ogenblikkelijke versnelling op
Toepassingen: enkele soorten bewegingen
• Eenparige, rechtlijnige beweging ERB
o Snelheid is constant ➔ a = 0
o Beschrijving in 1-dimensionale ruimte: x-as in richting v beweging
o Richtingscoëfficiënt v helling in (x, t) grafiek is v ➔ x = x0 + vt
• Eenparige, versnelde rechtlijnige beweging EVRB
o Versnelling is constant
o Beschrijving in 1-dimensionale ruimte: x-as in de richting v beweging
o Beschouw: x0 positie v deeltje op t = 0
v0 snelheid v deeltje op t = 0
a is constant
o Richtingscoëfficiënt in (v, t) grafiek: a ➔ v = v0 + at (1)
o X, t-grafiek:
▪ Richtingscoëfficiënt v raaklijn ➔
▪ Beweging gebeurt langs x-as ➔ (2)
, o Eliminatie t uit uitdrukkingen (1) en (2) levert betrekking op tss snelheid en plaats:
o Versnelling: positief ➔ v stijgt → zelfde zin als v
negatief ➔ v daalt → omgekeerde zin dan v
• Vrije val
o Vrije val = EVRB met als grootte vd versnelling de zwaartekrachts- of
gravitatieversnelling: a = g = 9,81 m/s2
o Beweging langs y-as
o Op t = 0, y0 = h, v0 = 0
o
o Tijd die verloopt vooraleer grond bereikt wordt (y = 0):
o Grootte v snelheid waarmee grond bereikt:
• Verticale worp
o Verticale worp opwaarts vanop grond met beginsnelheid v0
o t0 = ogenblik v worp: y0 = 0
o beweging is EVRB met als grootte v versnelling zwaartekrachtsversnelling g
o
o Hoogste punt ymax wordt bereikt wnr v = 0
Dit gebeurt na tijd
• Beweging met constante versnelling in vlak
o Wnr bewegingsrichting NIET die v versnelling is, is vectorbenadering in 2-dimensionale ruimte
noodzakelijk
o Vectoren r, v, en a ontbinden dan in componenten volgens x- en y-as
o 2-dimensionale beweging wordt bekomen door samenstelling v beweging langs x- en y-as
o Indien versnelling constant is, dan zijn ax en ay constant en worden kinematische vgl
• Projectielbaan (kogelbaan) → 2-dimensionale beweging
o Deze beweging treedt op als voorwerp in lucht geprojecteerd wordt in willekeurige richting
(NIET VERTICALE!) en waarbij horizontale snelheidscomponent bezit
o Voorwerp zal oiv gravitatieveld v aarde en luchtweerstand gebogen baan afleggen
o Zwaartekracht zal op voorwerp neerwaartse kracht uitoefenen met cte versnelling v ong 9,81
m/s2 en luchtweerstand zal voorwerp vertragen in richting tegengesteld aan bewegingsrichting
o Indien luchtweerstand verwaarloosd → projectielbeweging herleid tot samenstelling v
horizontale ERB en verticale EVRB (verticale worp)
in dit geval is a constant: ax = 0 en ay = -g (- want positieve y-as nr boven)
DEEL 1: BEGRIPPEN UIT KLASSIEKE MECHANICA
HOOFDSTUK 1: KINEMATICA
Inleiding
• Kinematica = leer vd bewegingen zonder oorzaken
beschrijving v beweging
• Beweging is relatief
Vectoren
• Scalairen en vectoren
o Scalaire grootheden <--> vector grootheden
o Voorstelling vector: pijl
o Notatie: AB, r
o Grootte of absolute waarde: |AB| of AB of |r| of r
GEEN GWNE ALGEBRAÏSCHE REKENREGELS VOOR VECTOREN
verplaatsing ≠ lengte
• Plaatsbepaling
o Oorsprong O kiezen
o Assenstelsel kiezen: driedimensionaal: orthogonaal rechtshandig assenstelsel
o Lokalisatie v punt: via coördinaten x, y, z
via plaatsvector r
o Plaatsverandering: beschreven door verplaatsingsvector AB en voorgesteld door pijl,
pijlpunt geeft zin aan
o Baan: verzameling v punten die lichaam doorloopt tijdens beweging
o VERPLAATSING VALT NIET NOODZAKELIJK SAMEN MET BAAN
• Ontbinden v vectoren in componenten
o Componenten: projecties v vector op assen v coördinatiestelsel
o 2 dimensionaal:
o Eenheidsvector:
o 3-dimensionaal: componenten v vector a langs x-, y- en z-as: ax, ay en az
• Som en verschil v vectoren
o Grafische methode:
▪ Som Verschil
, o Algebraïsche methode: optellen v vectoren met componenten
• Product met vectoren
o Product v scalair met vector
▪ Getal k en vector a: ka
o Scalair product v 2 vectoren
▪ a . b = abcosφ
▪ Scalair product = scalaire grootheid
▪ Indien vectoren a en b evenwijdig zijn: a . b = ab
▪ Indien a loodrecht op b staat: a . b = 0
o Vectorproduct v 2 vectoren
▪ axb=c
▪ nieuwe vector c
→ grootte c = absinφ met φ kleinste hoek om v a nr b te draaien
→ richting: staat loodrecht op vlak bepaald door a en b
→ zin: gegeven door regel v kurkentrekker toe te passen bij draaiing over
kleinste hoek v a nr b
▪ indien vectoren a en b evenwijdig zijn: |a x b| = 0
▪ indien a loodrecht staat op b: |a x b| = ab
Snelheid en versnelling
• Snelheid
o Volgen we baan v deeltje
o Indien deeltje op tijdstip t1 zich bevindt in punt P1 met plaatsvector r1 en even later
op tijdstip t2 in punt P2 met plaatsvector r2, dan wordt verplaatsingsvector gegeven
door:
o Tempo waarmee plaats v deeltje verandert in tijd
o Gem snelheid:
o Ogenblikkelijke snelheid v1 v stoffelijk punt op t1 in r1
o Algemeen:
o Snelheid = afgeleide v plaatsvector nr tijd
o Snelheid: vector met grootte en richting rakend aan baan
, o Dimensie: lengte per tijd
o Eenheid: m/s
o Richtingscoëfficiënt v rechte lijn tss P1 en P2 : gem snelheidsvector
o v = 0 wnr raaklijn horizontaal
• versnelling
o versnelling = tempo waarmee snelheid v deeltje/lichaam verandert in tijd
o volgen we baan v deeltje: op tijdstip t1 bevindt deeltje zich in punt P1 met snelheid
v1 en even later op tijdstip t2 in punt P2 met snelheid v2
o verandering in snelheid over tijdsinterval (t1, t2):
o gem versnelling over tijdsinterval (t1, t2):
o
o Ogenblikkelijke versnelling a1 v deeltje op t1 in A bekomt men door limietovergang t2 → t1
o Algemeen:
o Versnelling: afgeleide v snelheidsvector nr tijd
o Versnelling is vector met grootte en richting raken aan ‘hodograaf’
o Hodograaf = fictieve baan v snelheidspunt
o Dimensie: lengte per tijd2
o Eenheid: m/s2
o Richtingscoëfficiënt v helling = gem versnelling in t
o Helling = ogenblikkelijke versnelling op
Toepassingen: enkele soorten bewegingen
• Eenparige, rechtlijnige beweging ERB
o Snelheid is constant ➔ a = 0
o Beschrijving in 1-dimensionale ruimte: x-as in richting v beweging
o Richtingscoëfficiënt v helling in (x, t) grafiek is v ➔ x = x0 + vt
• Eenparige, versnelde rechtlijnige beweging EVRB
o Versnelling is constant
o Beschrijving in 1-dimensionale ruimte: x-as in de richting v beweging
o Beschouw: x0 positie v deeltje op t = 0
v0 snelheid v deeltje op t = 0
a is constant
o Richtingscoëfficiënt in (v, t) grafiek: a ➔ v = v0 + at (1)
o X, t-grafiek:
▪ Richtingscoëfficiënt v raaklijn ➔
▪ Beweging gebeurt langs x-as ➔ (2)
, o Eliminatie t uit uitdrukkingen (1) en (2) levert betrekking op tss snelheid en plaats:
o Versnelling: positief ➔ v stijgt → zelfde zin als v
negatief ➔ v daalt → omgekeerde zin dan v
• Vrije val
o Vrije val = EVRB met als grootte vd versnelling de zwaartekrachts- of
gravitatieversnelling: a = g = 9,81 m/s2
o Beweging langs y-as
o Op t = 0, y0 = h, v0 = 0
o
o Tijd die verloopt vooraleer grond bereikt wordt (y = 0):
o Grootte v snelheid waarmee grond bereikt:
• Verticale worp
o Verticale worp opwaarts vanop grond met beginsnelheid v0
o t0 = ogenblik v worp: y0 = 0
o beweging is EVRB met als grootte v versnelling zwaartekrachtsversnelling g
o
o Hoogste punt ymax wordt bereikt wnr v = 0
Dit gebeurt na tijd
• Beweging met constante versnelling in vlak
o Wnr bewegingsrichting NIET die v versnelling is, is vectorbenadering in 2-dimensionale ruimte
noodzakelijk
o Vectoren r, v, en a ontbinden dan in componenten volgens x- en y-as
o 2-dimensionale beweging wordt bekomen door samenstelling v beweging langs x- en y-as
o Indien versnelling constant is, dan zijn ax en ay constant en worden kinematische vgl
• Projectielbaan (kogelbaan) → 2-dimensionale beweging
o Deze beweging treedt op als voorwerp in lucht geprojecteerd wordt in willekeurige richting
(NIET VERTICALE!) en waarbij horizontale snelheidscomponent bezit
o Voorwerp zal oiv gravitatieveld v aarde en luchtweerstand gebogen baan afleggen
o Zwaartekracht zal op voorwerp neerwaartse kracht uitoefenen met cte versnelling v ong 9,81
m/s2 en luchtweerstand zal voorwerp vertragen in richting tegengesteld aan bewegingsrichting
o Indien luchtweerstand verwaarloosd → projectielbeweging herleid tot samenstelling v
horizontale ERB en verticale EVRB (verticale worp)
in dit geval is a constant: ax = 0 en ay = -g (- want positieve y-as nr boven)