100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting fysica 1

Beoordeling
4,0
(1)
Verkocht
1
Pagina's
52
Geüpload op
16-01-2023
Geschreven in
2020/2021

Samenvatting van de volledige lessenreeks fysica 1












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
16 januari 2023
Aantal pagina's
52
Geschreven in
2020/2021
Type
Samenvatting

Voorbeeld van de inhoud

FYSICA
DEEL 1: BEGRIPPEN UIT KLASSIEKE MECHANICA
HOOFDSTUK 1: KINEMATICA
Inleiding

• Kinematica = leer vd bewegingen zonder oorzaken
beschrijving v beweging
• Beweging is relatief

Vectoren

• Scalairen en vectoren
o Scalaire grootheden <--> vector grootheden
o Voorstelling vector: pijl
o Notatie: AB, r
o Grootte of absolute waarde: |AB| of AB of |r| of r
GEEN GWNE ALGEBRAÏSCHE REKENREGELS VOOR VECTOREN
verplaatsing ≠ lengte
• Plaatsbepaling
o Oorsprong O kiezen
o Assenstelsel kiezen: driedimensionaal: orthogonaal rechtshandig assenstelsel
o Lokalisatie v punt: via coördinaten x, y, z
via plaatsvector r
o Plaatsverandering: beschreven door verplaatsingsvector AB en voorgesteld door pijl,
pijlpunt geeft zin aan
o Baan: verzameling v punten die lichaam doorloopt tijdens beweging
o VERPLAATSING VALT NIET NOODZAKELIJK SAMEN MET BAAN
• Ontbinden v vectoren in componenten
o Componenten: projecties v vector op assen v coördinatiestelsel
o 2 dimensionaal:




o Eenheidsvector:
o 3-dimensionaal: componenten v vector a langs x-, y- en z-as: ax, ay en az
• Som en verschil v vectoren
o Grafische methode:
▪ Som Verschil

, o Algebraïsche methode: optellen v vectoren met componenten




• Product met vectoren
o Product v scalair met vector
▪ Getal k en vector a: ka
o Scalair product v 2 vectoren
▪ a . b = abcosφ
▪ Scalair product = scalaire grootheid
▪ Indien vectoren a en b evenwijdig zijn: a . b = ab
▪ Indien a loodrecht op b staat: a . b = 0
o Vectorproduct v 2 vectoren
▪ axb=c
▪ nieuwe vector c
→ grootte c = absinφ met φ kleinste hoek om v a nr b te draaien
→ richting: staat loodrecht op vlak bepaald door a en b
→ zin: gegeven door regel v kurkentrekker toe te passen bij draaiing over
kleinste hoek v a nr b
▪ indien vectoren a en b evenwijdig zijn: |a x b| = 0
▪ indien a loodrecht staat op b: |a x b| = ab

Snelheid en versnelling

• Snelheid
o Volgen we baan v deeltje
o Indien deeltje op tijdstip t1 zich bevindt in punt P1 met plaatsvector r1 en even later
op tijdstip t2 in punt P2 met plaatsvector r2, dan wordt verplaatsingsvector gegeven
door:
o Tempo waarmee plaats v deeltje verandert in tijd

o Gem snelheid:
o Ogenblikkelijke snelheid v1 v stoffelijk punt op t1 in r1




o Algemeen:
o Snelheid = afgeleide v plaatsvector nr tijd


o Snelheid: vector met grootte en richting rakend aan baan

, o Dimensie: lengte per tijd
o Eenheid: m/s
o Richtingscoëfficiënt v rechte lijn tss P1 en P2 : gem snelheidsvector
o v = 0 wnr raaklijn horizontaal
• versnelling
o versnelling = tempo waarmee snelheid v deeltje/lichaam verandert in tijd
o volgen we baan v deeltje: op tijdstip t1 bevindt deeltje zich in punt P1 met snelheid
v1 en even later op tijdstip t2 in punt P2 met snelheid v2
o verandering in snelheid over tijdsinterval (t1, t2):


o gem versnelling over tijdsinterval (t1, t2):

o
o Ogenblikkelijke versnelling a1 v deeltje op t1 in A bekomt men door limietovergang t2 → t1




o Algemeen:
o Versnelling: afgeleide v snelheidsvector nr tijd


o Versnelling is vector met grootte en richting raken aan ‘hodograaf’
o Hodograaf = fictieve baan v snelheidspunt
o Dimensie: lengte per tijd2
o Eenheid: m/s2
o Richtingscoëfficiënt v helling = gem versnelling in t
o Helling = ogenblikkelijke versnelling op

Toepassingen: enkele soorten bewegingen

• Eenparige, rechtlijnige beweging ERB
o Snelheid is constant ➔ a = 0
o Beschrijving in 1-dimensionale ruimte: x-as in richting v beweging
o Richtingscoëfficiënt v helling in (x, t) grafiek is v ➔ x = x0 + vt
• Eenparige, versnelde rechtlijnige beweging EVRB
o Versnelling is constant
o Beschrijving in 1-dimensionale ruimte: x-as in de richting v beweging
o Beschouw: x0 positie v deeltje op t = 0
v0 snelheid v deeltje op t = 0
a is constant
o Richtingscoëfficiënt in (v, t) grafiek: a ➔ v = v0 + at (1)
o X, t-grafiek:
▪ Richtingscoëfficiënt v raaklijn ➔

▪ Beweging gebeurt langs x-as ➔ (2)

, o Eliminatie t uit uitdrukkingen (1) en (2) levert betrekking op tss snelheid en plaats:




o Versnelling: positief ➔ v stijgt → zelfde zin als v
negatief ➔ v daalt → omgekeerde zin dan v
• Vrije val
o Vrije val = EVRB met als grootte vd versnelling de zwaartekrachts- of
gravitatieversnelling: a = g = 9,81 m/s2
o Beweging langs y-as
o Op t = 0, y0 = h, v0 = 0




o
o Tijd die verloopt vooraleer grond bereikt wordt (y = 0):

o Grootte v snelheid waarmee grond bereikt:
• Verticale worp
o Verticale worp opwaarts vanop grond met beginsnelheid v0
o t0 = ogenblik v worp: y0 = 0
o beweging is EVRB met als grootte v versnelling zwaartekrachtsversnelling g




o
o Hoogste punt ymax wordt bereikt wnr v = 0


Dit gebeurt na tijd
• Beweging met constante versnelling in vlak
o Wnr bewegingsrichting NIET die v versnelling is, is vectorbenadering in 2-dimensionale ruimte
noodzakelijk
o Vectoren r, v, en a ontbinden dan in componenten volgens x- en y-as
o 2-dimensionale beweging wordt bekomen door samenstelling v beweging langs x- en y-as
o Indien versnelling constant is, dan zijn ax en ay constant en worden kinematische vgl




• Projectielbaan (kogelbaan) → 2-dimensionale beweging
o Deze beweging treedt op als voorwerp in lucht geprojecteerd wordt in willekeurige richting
(NIET VERTICALE!) en waarbij horizontale snelheidscomponent bezit
o Voorwerp zal oiv gravitatieveld v aarde en luchtweerstand gebogen baan afleggen
o Zwaartekracht zal op voorwerp neerwaartse kracht uitoefenen met cte versnelling v ong 9,81
m/s2 en luchtweerstand zal voorwerp vertragen in richting tegengesteld aan bewegingsrichting
o Indien luchtweerstand verwaarloosd → projectielbeweging herleid tot samenstelling v
horizontale ERB en verticale EVRB (verticale worp)
in dit geval is a constant: ax = 0 en ay = -g (- want positieve y-as nr boven)

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
1 jaar geleden

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
camilledecoster Universiteit Gent
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
31
Lid sinds
3 jaar
Aantal volgers
15
Documenten
90
Laatst verkocht
1 maand geleden

3,6

5 beoordelingen

5
2
4
1
3
0
2
2
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen