100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Computational Neuroscience & Neuroinformatics

Beoordeling
3,0
(2)
Verkocht
15
Pagina's
211
Geüpload op
13-01-2023
Geschreven in
2021/2022

Extensive summary of the course Computational Neuroscience & Neuroinformatics Includes the part of prof. Adhikari, prof. De Vos and prof. Bruffaerts - Frequency Analysis, Filtering, Convolution, Principal Component Analysis, Independent Component Analysis - Analysis of task based functional magnetic resonance imaging - Analysis of dynamic functional connectivity from resting state fMRI data - In-vivo imaging and whole brain imaging - Neural networks

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
13 januari 2023
Aantal pagina's
211
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

COMPUTATIONAL NEUROSCIENCES

1. Introduction, Overview & Foundations of Neurodynamics
Introduction
Why study brain ?

• Brain is probably the most complex and yet interesting organ of the body.
• Fundamental understanding of structure, interaction between different parts and the function
of the brain.
• Brain is a high-dimensional complex network.
o Focal stroke, not just the output of the directly affected neurons will be disturbed
o Not: 1 brain region - 1 function
• Several brain disorders have now been identified
o Epilepsy, stroke, neurodegeneration, Schizophrenia, Autism that need to be better
understood to identify treatment strategies.
• Brain can be studied at several scales: molecular, cellular, microcircuit, population, and
system level to behaviour.
• Opens up possibilities to develop novel methods of probing the brain at different scales as well
as analysing complex datasets. (e.g. optogenetics)



Complexity of the brain

• Brain is made up of predominantly neurons, but also microglia
o Microglia: energy supply & structural stabilization of brain tissue
• 1011 neurons; 1015 synapses/connections; each neuron receives ~10000 synapses from other
neuron.
• Many different types of neurons exist in terms of size, shape and molecular properties.
• Neurons communicate via electrical impulses, called action potentials.
o Frequency and rate will depend on type of neuron and input it receives

Overview
Overview: Neurons




- Dendrites: ‘input device’ receives input from other neurons, transmit them to the soma
- Soma; ‘central processing unit’: integrates info by nonlinear processing step, if total input
arriving at soma exceeds the threshold, then an output signal is generated
- Axon: ‘output device’: ~wire, carries electrical signal to other neurons

1

,Overview generation of an AP
- Different concentrations on both sides of the cell → ° potential difference (=membrane potential)
- When potential differences decreases to certain level → neuron fires
o Depolarization will depend on the input the neuron receives from other neurons
- Neural signal of a single neuron consists of short electrical pulses (spike train)
o Each pulse = AP/spike
o AP amplitude = 100mV, duration = 1-2ms
o Form of the AP does not change




Overview: simple Neuron Model




Overview: Spikes and Subtreshold regime




• Output
o Spikes= AP are rare events
▪ Exc. Bursting neurons fire more spikes at a time (=interneurons?) but afterwards
they will be silent, and the potential will be subthreshold again
o Are triggered at tresholds

• Below threshold = subthreshold regime
o The membrane potential fluctuates, if it reaches a threshold it fires an AP

2

, - Subthreshold fluctuations before AP




Foundations of Neurodynamics
1.1.1. A simple Neuron Model
The passive membrane

• The passive membrane doesn’t generate spikes
• Focus on subthreshold regime, Everything is linear
• The simplest model of a passive membrane = RC circuit
o R = resting membrane resistance + intracellular axial resistance along axons & dendrites
o C= membrane capacitance (in parallel with membrane resistance)e
➔ 3 passive electrical properties of neurons
•  Active membrane responses = responses that occur whenever ion channels are gated by
channels r chemicals




Fig 1: the EPSP caused by the arrival of a spike from
neuron jj at an excitatory synapse of neuron ii.




The cell membrane acts like a
capacitor in parallel with a resistor
which is in line with a battery of
potential Urest (zoomed inset).
If the driving force vanishes, the
voltage across the capacitor is
given by the battery voltage urest



See movies Neuronal Dynamics
3

, -------------------------------------------------------------------------

Post-synapticpotential
❖ The timecourse of ui (t) of the membrane potential of neuron i
• With electrode we can measure the potential difference u(t) between in & out = membrane
potential
o Without input → neuron is at rest → constant membrane potential urest
• Before the input ui(t)=urest .
• At t=0 the presynaptic neuron j fires its spike. For t>0, we see at the electrode a response of
neuron i arrives
𝑢𝑖 (𝑡) − 𝑢𝑟𝑒𝑠𝑡 =: ∈𝑖𝑗 (𝑡)
o The right part of the equation defines the postsynaptic potential (PSP

• If the voltage difference 𝑢𝑖 (𝑡) − 𝑢𝑟𝑒𝑠𝑡 is positive/ negative we have an excitatory/inhibitory
postsynaptic potential, EPSP/ IPSP

See figure 1

--------------------------------------------------------------------------

Can we describe u(t) in response to/ in function of an input current I(t)?
❖ U(t) for an input I(t)
• The input current I(t) (coms from another neuron) gets divided over the capacitor & the resistor :
𝑰 = 𝑰𝑪 + 𝑰𝑹
o 𝑰𝑪 ?
𝑄
▪ 𝐶=
𝑢
Capacitor = constant,
𝑄
▪ 𝑈= Q = charge over the capacitance, will change as the current comes in
𝐶
𝑑𝑢 𝐼 𝑑𝑄
▪ = dq/dt = I
𝑑𝑡 𝐶 𝑑𝑡
𝑑𝑢 𝐼𝑐
▪ =
𝑑𝑡 𝐶
𝑑𝑢
▪ 𝐼𝑐 = 𝐶 ∗
𝑑𝑡


o 𝑰𝑹 ?
(𝑢−𝑢𝑟𝑒𝑠𝑡 )
▪ 𝐼𝑅 = Ohm’s Law: V=IR
𝑅



o 𝑰 = 𝑰𝑪 + 𝑰𝑹
𝑑𝑢 (𝑢−𝑢𝑟𝑒𝑠𝑡 )
▪ 𝐼= 𝐶∗ +
𝑑𝑡 𝑅
𝐶𝑑𝑢 −(𝑢−𝑢𝑟𝑒𝑠𝑡 )
 = +𝐼
𝑑𝑡 𝑅

𝑑𝑢
𝑅𝐶 = −(𝑢 − 𝑢𝑟𝑒𝑠𝑡 ) + 𝑅𝐼
𝑑𝑡


= Equation of a passive membrane
= Linear Ordinary Differential equation
= RC equation to membrane potential changes as a function of the input current


4

Beoordelingen van geverifieerde kopers

Alle 2 reviews worden weergegeven
11 maanden geleden

2 jaar geleden

3,0

2 beoordelingen

5
1
4
0
3
0
2
0
1
1
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Katriendc Universiteit Antwerpen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
44
Lid sinds
7 jaar
Aantal volgers
16
Documenten
0
Laatst verkocht
3 weken geleden

2,8

4 beoordelingen

5
1
4
1
3
0
2
0
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen