100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Stat 431 Assignment 3 solutions|very helpful

Beoordeling
-
Verkocht
-
Pagina's
12
Cijfer
A+
Geüpload op
07-12-2022
Geschreven in
2022/2023

Stat 431 Assignment 3 solutions 1. [ 12 marks] (a) We start by fitting the interaction model logit(πi) = β0 + β1xi1 + β2xi2 + β3xi1xi2 The Wald-test for H0 : β3 (coefficient of interaction term) gives a p−value << 0.05, hence we can not drop the interaction term. Since we can not further simplify this model, it is the best logit model we can fit. [2] cells<-("", header=T) cells$resp<-cbind(cells$Cell, 200-cells$Cell) fit1<-glm(resp~tnf+ifn+tnf*ifn, family=binomial, data=cells) > summary(fit1) Call: glm(formula = resp ~ tnf + ifn + tnf * ifn, family = binomial, data = cells) Deviance Residuals: Min 1Q Median 3Q Max -5.2331 -3.4359 -0.7136 2.8511 4.8272 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -1.730e+00 7.055e-02 -24.524 < 2e-16 *** tnf 2.521e-02 1.353e-03 18.625 < 2e-16 *** ifn 1.068e-02 1.213e-03 8.798 < 2e-16 *** tnf:ifn 3.839e-04 8.499e-05 4.517 6.26e-06 *** --- Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 1309.96 on 15 degrees of freedom Residual deviance: 192.36 on 12 degrees of freedom AIC: 281.84 However, the deviance test indicate that this model is not adequate (compared to the saturated model). Interpretation [4] • exp(βb0) = 0.: odds of response when both TNF dose xi1 = 0 and IFN dose xi2 = 0. This odds is < 1, which means the probability of cell differentiation is very low (compared to no cell differentiation). • β2 is the change in the log odds of cell differentiation associated with 1 unit of increase in IFN, when TNF dose xi1 = 0. As βb2 = 1.068, the log odds (or the probability) of cell differentiation increase as IFN dose increases, when TNF dose is zero. • When the dose of TNF (xi1) increase by 1 unit, the log odds of response change by β1 + β3xi2, which is a linear function of IFN dose (xi2). – βb1 = 2.521 is the amount of increase in log odds due to 1 unit of increase in TNF, when IFN dose xi2 =

Meer zien Lees minder
Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
7 december 2022
Aantal pagina's
12
Geschreven in
2022/2023
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Stat 431 Assignment 3 solutions


1. [ 12 marks]

(a) We start by fitting the interaction model




!
st
logit(πi ) = β0 + β1 xi1 + β2 xi2 + β3 xi1 xi2




po
The Wald-test for H0 : β3 (coefficient of interaction term) gives a p − value << 0.05,
hence we can not drop the interaction term. Since we can not further simplify this
model, it is the best logit model we can fit. [2]




t
no
cells<-read.table("cells.txt", header=T)
cells$resp<-cbind(cells$Cell, 200-cells$Cell)

fit1<-glm(resp~tnf+ifn+tnf*ifn, family=binomial, data=cells)




o
> summary(fit1)




D
Call:
glm(formula = resp ~ tnf + ifn + tnf * ifn, family = binomial,




-
data = cells)




ht
Deviance Residuals:
Min 1Q Median 3Q Max
-5.2331 -3.4359 -0.7136 2.8511 4.8272
ig
yr
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.730e+00 7.055e-02 -24.524 < 2e-16 ***
op

tnf 2.521e-02 1.353e-03 18.625 < 2e-16 ***
ifn 1.068e-02 1.213e-03 8.798 < 2e-16 ***
tnf:ifn 3.839e-04 8.499e-05 4.517 6.26e-06 ***
C



---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
e




(Dispersion parameter for binomial family taken to be 1)
th




Null deviance: 1309.96 on 15 degrees of freedom
Residual deviance: 192.36 on 12 degrees of freedom
ns




AIC: 281.84
ow




However, the deviance test indicate that this model is not adequate (compared to
the saturated model).
r




Interpretation [4]
to




• exp(βb0 ) = 0.1772844: odds of response when both TNF dose xi1 = 0 and IFN
c




dose xi2 = 0. This odds is < 1, which means the probability of cell differentiation
ru




is very low (compared to no cell differentiation).
• β2 is the change in the log odds of cell differentiation associated with 1 unit
st




of increase in IFN, when TNF dose xi1 = 0. As βb2 = 1.068, the log odds (or
In




the probability) of cell differentiation increase as IFN dose increases, when TNF
dose is zero.
• When the dose of TNF (xi1 ) increase by 1 unit, the log odds of response change
by β1 + β3 xi2 , which is a linear function of IFN dose (xi2 ).
– βb1 = 2.521 is the amount of increase in log odds due to 1 unit of increase in
TNF, when IFN dose xi2 = 0.

1

, – We see that βb3 = 3.839 (the slope of the change in log odds), it means
that the higher the dose of IFN, the bigger the increase in log odds of cell
differentiation due to the increase of TNF dose.
In summary, the significant positive effect of interaction term β3 implies
that, the higher the TNF dose, the stronger the impact of IFN dose on the
probability of cell differentiation, and vice versa.




!
st
• Similarly when the dose of IFN dose (xi2 ) increase by 1 unit, the log odds of




po
response change by β2 + β3 xi1 , which is a linear function of TNF dose (xi1 ).
– βb2 = 1.068 is the amount of increase in log odds due to 1 unit of increase in




t
IFN, when TNF dose xi1 = 0.




no
(b) Deviance residuals plots demonstrate the poor fit of the selected logistic model in
(a), which agrees with the Deviance test result. [2]




o
D
-
ht
5




5




5
DEVIANCE RESIDUALS




DEVIANCE RESIDUALS




DEVIANCE RESIDUALS
ig
0




0




0
yr
op
-5




-5




-5
C



0 20 40 60 80 100 0 20 40 60 80 100 0.2 0.4 0.6 0.8 1.0

TNF dose IFN dose FITTED VALUE
e
th




rd <- residuals.glm(fit1,"deviance")
fv <- fit1$fitted.values
ns




par(mfrow=c(1, 3))
plot(cells$tnf, rd,ylim=c(-8,8), xlab="TNF dose",ylab="DEVIANCE RESIDUALS")
abline(h=-2); abline(h= 2)
ow




plot(cells$ifn, rd,ylim=c(-8,8), xlab="IFN dose",ylab="DEVIANCE RESIDUALS")
abline(h=-2); abline(h= 2)
plot(fv, rd,ylim=c(-8,8), xlab="FITTED VALUE",ylab="DEVIANCE RESIDUALS")
abline(h=-2); abline(h= 2)
r
to




(c) The best fitted cloglog model is the main effects model [2]
c




log(− log(1 − πi )) = β0 + β1 xi1 + β2 xi2
ru




However, changing to cloglog link seems do not improve the fit at all, and the residual
st




plots are equally bad as the logit model. [2]
In




2

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Abbyy01 Exam Questions
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
91
Lid sinds
3 jaar
Aantal volgers
33
Documenten
1121
Laatst verkocht
3 weken geleden

3,5

13 beoordelingen

5
5
4
2
3
3
2
1
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen