100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Microbial Metabalism (BB090) Summary of all lectures

Beoordeling
-
Verkocht
-
Pagina's
53
Geüpload op
23-09-2022
Geschreven in
2019/2020

All the lectures of the course Microbial Metabalism (BB090) given in the 2nd year of the Bachlor Biology. It is mainly picutes and bullet point. Great for people who struggle with large chunks of text.

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
23 september 2022
Aantal pagina's
53
Geschreven in
2019/2020
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Lecture 2 BioEnergetics
Anabolism​ → How the cell build cell components
Catabolism​ → How the cell converts compounds into
energy

Metabolism​ - The sum total of all of the chemical
reactions that occur in a cell
● Catabolic reactions (catabolism)
○ Energy-releasing metabolic reactions
○ “Energy metabolism”
● Anabolic reactions (anabolism)
○ Energy-consuming biosynthetic
reactions
○ “Biosynthesis”

Making ATP (energy) is the ultimate goal for all microorganisms.
● Energy required for making ATP comes from chemical reactions


1st law of thermodynamics
Energy can be transformed from one form to
another but not been generated or destroyed


Inorganic chemical metabolism is not found in
eukaryotes

Principles of Bioenergetics
● In any chemical reaction, energy is either
required or released (burn / make).
● Free energy (G): energy released that is
available to do work
● The change in free energy during a reaction is
referred to as ΔG0 ′ (standard conditions)
○ Exergonic:​ Reactions with –ΔG0 ′ release free energy and can eventually be
used to make ATP.
○ Endergonic:​ Reactions with +ΔG0 ′ require energy so ATP would be required
to make them work.

,Coupling of endergonic and exergonic reactions




If ΔG0 ′ = 0, the reaction is in equilibrium and nothing happens
● Free-energy calculations do not provide information on reaction rates.
● The reaction rate results from a combination of thermodynamics (G0 ’) and kinetics
(velocity of catalysis)

Catalysis and Enzymes
Catalyst
● Is not being consumed in the reaction
● Lowers the activation energy of a
reaction
● Increases reaction rate
● Does not affect energetics or
equilibrium of a reaction

Enzymes
● Biological catalysts
● Typically proteins (some RNAs)
● Highly specific
● Generally larger than substrate
● Typically rely on weak bonds
○ Examples: hydrogen bonds, van der Waals forces, hydrophobic interactions
● Active site: region of enzyme that binds substrate

Enzyme nomenclature
EC 1. Oxidoreductases
To this class belong all enzymes catalysing oxido-reductions. The substrate oxidized is
regarded as electron donor. Common name is 'dehydrogenase', wherever this is possible; as
an alternative, 'acceptor reductase' can be used.
NADH: ubiquinone oxidoreductase, i.e. NADH dehydrogenase in complex I

,EC 2. Transferases
Transferases are enzymes transferring a group, for example, the methyl group from one
compound (generally regarded as donor) to another compound (generally regarded as
acceptor). The classification is based on the scheme 'donor: acceptor group transferase'.
e.g. CH3 -H4MPT: CoM methyltransferase

EC 3. Hydrolases
These enzymes catalyse the hydrolysis of various bonds.
e.g. peptidase

EC 4. Lyases
Lyases are enzymes cleaving C-C, C-O, C-N and other bonds by other means than by
hydrolysis or oxidation. They differ from other enzymes in that two substrates are involved in
one reaction direction, but only one in the other direction.
e.g. fructose bisphosphate aldolase

EC 5. Isomerases
These enzymes catalyse changes within one molecule.
e.g. triosephosphate isomerase

EC 6. Ligases
Ligases are enzymes that catalyse the joining of two molecules with concomitant hydrolysis
of the diphosphate bond in ATP or a similar triphosphate.
e.g. DNA ligase

Cofactor used in enzyme catalysis




Enzymes therefore make use of cofactors:
● Tighly/covalently bound: prosthetic groups, e.g. Fe-S centers
● Non-covalently bound/ interaction with different enzymes: coenzyme, e.g. NADH)

, Electron donors and acceptors




The standard potential is indicated by E0’(E zero prime)
0 = standard conditions
= 1 mol/L substrate and 1 mol/L product
= 1 atm in the case of gasses
‘ = biological conditions
= pH 7.0, 25 deg centigrade (room temp)

Learning Goals
● Understand and distinguish different types of microbial metabolism and balance
microbiologically relevant redox reactions
● Understand the (bio)chemical principles of microbial metabolism

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
romykiffen Radboud Universiteit Nijmegen
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
22
Lid sinds
3 jaar
Aantal volgers
16
Documenten
0
Laatst verkocht
1 maand geleden

2,5

2 beoordelingen

5
0
4
0
3
1
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen