100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Statistiek (FEB21007)

Beoordeling
-
Verkocht
1
Pagina's
8
Geüpload op
06-09-2022
Geschreven in
2019/2020

Uitgebreide samenvatting van Statistiek (econometrie EUR)

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
6 september 2022
Aantal pagina's
8
Geschreven in
2019/2020
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Week 1
Random sampling assumption
Independent and identically distributed (i.i.d) random variables 𝑋! , … , 𝑋" with pdf 𝑓(𝑥; 𝜃),
where the parameter 𝜃 is unknown. 𝜃 lies in some parameter space Ω
Type of means
Population mean: the mean that is a characteristic of the type of the distribution
!
Sample mean: the observed mean, calculated as 𝑋+ = " ∑"#$! 𝑋#
Variables/value
The unknown/unobserved are random variables in uppercase, 𝑋! , … , 𝑋" ~(𝑖. 𝑖. 𝑑) 𝑓(𝑥; 𝜃)
The data consists of observed values in lower case from the random process, 𝑥! , … , 𝑥"
Estimates/estimate
An estimator 𝑇 = 𝑡(𝑋! , … , 𝑋" ) is a function of the random variables 𝑋! , … , 𝑋" , so also a rv
An estimate 𝑇 = 𝑡(𝑥! , … , 𝑥" ) is the observed value of the estimator 𝑇 (the function value) based
on the observed values 𝑥! , … , 𝑥"
Method of moments estimator (MME)
! %
Population moments: 𝐸6𝑋% 7 = 𝜇%& (𝜃! , … , 𝜃' ) and sample moments: " ∑"#$! 𝑋# = 𝑀%&
Obtain an estimator of the unknown parameter 𝜽 = (𝜃! , … , 𝜃' ) by equating population
moments to sample moments
Maximum likelihood estimator (MLE)
Use the value of the unknown parameter 𝜽 = (𝜃! , … , 𝜃' ) that is most likely to have generated
the observed data as estimate. The likelihood function is defined as 𝐿(𝜽) = 𝑓(𝑋! , … , 𝑋" ; 𝜽)
For a random sample 𝑋! , … , 𝑋" we have 𝐿(𝜽) = ∏"#$! 𝑓(𝑋# ; 𝜽)
The MLE 𝜽= = 6𝜃>! , … , 𝜃>' 7 is the value of 𝜽 that maximizes 𝐿(𝜽)
Maximum of 𝐿(𝜽)
(
Compute MLE as the solution of () 𝐿(𝜽) = 0, but it is not always possible to compute
(
∏"#$! 𝑓(𝑋# ; 𝜽). Taking the logarithm of 𝐿(𝜽) gives the log-likelihood ln6𝐿(𝜽)7, then compute
()
( (!
()
ln6𝐿(𝜽)7 = 0 and check if ()! ln6𝐿(𝜽)7 < 0. If 𝐿(𝜽) is not differentiable, mathematical
reasoning is required
Invariance properties
If 𝜃> is the MLE of 𝜃 and if 𝑢(𝜃) is a function of 𝜃, then 𝑢6𝜃>7 is an MLE of 𝑢(𝜃)
= = 6𝜃>! , … , 𝜃>' 7 denotes the MLE of 𝜽 = (𝜃! , … , 𝜃' ), then the MLE of
If 𝜽
𝜏(𝜽) = 6𝜏! (𝜽), … , 𝜏* (𝜽)7 is 𝜏6𝜽 =7 = E𝜏! 6𝜽
=7, … , 𝜏* 6𝜽
= 7F for 1 ≤ 𝑟 ≤ 𝑘
Unbiased estimator
An estimator 𝑇 is said to be an unbiased estimator of 𝜏(𝜃) if 𝐸(𝑇) = 𝜏(𝜃) for all 𝜃 ∈ Ω.
Otherwise, we say that 𝑇 is a biased estimator of 𝜏(𝜃)
The bias is defined as 𝐵𝑖𝑎𝑠(𝑇) = 𝐸(𝑇) − 𝜏(𝜃). With an unbiased estimator, on average the true
value is estimated (an accurate estimator)
Mean squared error (MSE)
+
If 𝑇 is an estimator of 𝜏(𝜃), then the MSE of 𝑇 is given by 𝑀𝑆𝐸(𝑇) = 𝐸6𝑇 − 𝜏(𝜃)7
+
Moreover, 𝑀𝑆𝐸(𝑇) = 𝑉(𝑇) + 6𝐵𝑖𝑎𝑠(𝑇)7 , so if 𝑇 is unbiased, the 𝑀𝑆𝐸(𝑇) = 𝑉(𝑇)
Uniformly minimum variance unbiased estimator (UMVUE)
An estimator 𝑇 ∗ of 𝜏(𝜃) is called a UMVUE of 𝜏(𝜃) is 𝑇 ∗ is unbiased for 𝜏(𝜃) and for any other
unbiased estimator 𝑇 of 𝜏(𝜃), 𝑉(𝑇 ∗ ) ≤ 𝑉(𝑇) for all 𝜃 ∈ Ω
Cramer-Rao lower bound (CRLB)
!
-." ())1
If 𝑇 is an unbiased estimator of 𝜏(𝜃), then the CRLB is 𝑉(𝑇) ≥ # ! or
"23 4567(8;)):;
#$

, !
-." ())1
𝑉(𝑇) ≥ #!
. If an unbiased estimator equals the CRLB, it is a UMVUE
<"2= ! 4567(8;)):>
#$
Relative efficiency
The relative efficiency of an unbiased estimator 𝑇 of 𝜏(𝜃) to another unbiased estimator 𝑇 ∗ of
?(@ ∗ )
𝜏(𝜃) is given by 𝑟𝑒(𝑇, 𝑇 ∗ ) = ?(@)
Efficiency
An unbiased estimator 𝑇 ∗ of 𝜏(𝜃) is said to be efficient if 𝑟𝑒(𝑇, 𝑇 ∗ ) ≤ 1 for all unbiased
estimators 𝑇 of 𝜏(𝜃), and all 𝜃 ∈ Ω. The efficiency of an unbiased estimator 𝑇 of 𝜏(𝜃) is given by
𝑒(𝑇) = 𝑟𝑒(𝑇, 𝑇 ∗ ) if 𝑇 ∗ is an efficient estimator of 𝜏(𝜃).
An unbiased estimator that reaches the CRLB is efficient and an efficient estimator is UMVUE
Estimator with several unknown parameters
If 𝑋! , … , 𝑋" have pdf 𝑓(𝑥; 𝜃! , … , 𝜃' ), solve the system of equations with 𝑘 equations.
! !
For MME, the system is: 𝐸(𝑋! ) = " ∑"#$! 𝑋#! , … , 𝐸(𝑋 ' ) = " ∑"#$! 𝑋#'
For MML, the system is all the 𝑘 partial derivatives of the log-likelihood equal to 0

Week 2
Simple consistency
Let {𝑇" } be a sequence of estimators of 𝜏(𝜃). These estimators are said to be consistent
estimators of 𝜏(𝜃) if for every 𝜀 > 0, lim 𝑃(|𝑇" − 𝜏(𝜃)| < 𝜀) = 1 for every 𝜃 ∈ Ω
"→B
C
This is equivalent to lim 𝑃(|𝑇" − 𝜏(𝜃)| > 𝜀) = 0. The notation is 𝑇" → 𝜏(𝜃)
"→B
A consistent estimator converges in probability to the true value
MSE consistency
If {𝑇" } be a sequence of estimators of 𝜏(𝜃), then they are called MSE consistent if
+
lim 𝐸6𝑇" − 𝜏(𝜃)7 = 0 for every 𝜃 ∈ Ω. MSE consistency ⟹ (simple) consistency
"→B
Asymptotically unbiased estimator
A sequence of estimators {𝑇" } is said to be asymptotically unbiased for 𝜏(𝜃) if lim 𝐸(𝑇" ) = 𝜏(𝜃)
"→B
for all 𝜃 ∈ Ω. Estimator is MSE consistent ⟺ it is asymptotically unbiased and lim 𝑉( 𝑇" ) = 0
"→B
Law of Large Numbers (LLN)
If 𝑋! , … , 𝑋" is a random sample from a distribution with finite mean and variance, then
! C
𝑋+" = " ∑"#$! 𝑋# → 𝐸(𝑋)
Continuous mapping theorem
C C
If 𝑌" → 𝑐, then for any function 𝑔(𝑦) that is continuous at 𝑐, 𝑔(𝑌" ) → 𝑔(𝑐)
This is also valid for 𝑘-dimensional vectors
Convergence in probability results theorem
C C
If 𝑋" and 𝑌" are two sequences of random variables such that 𝑋" → 𝑐 and 𝑌" → 𝑑, then:
C
- 𝑎𝑋" + 𝑏𝑌" → 𝑎𝑐 + 𝑏𝑑
C
- 𝑋" 𝑌" → 𝑐𝑑
C
- 𝑋" /𝑐 → 1 for 𝑐 ≠ 0
C
- 1/𝑋" → 1/𝑐 if 𝑐 ≠ 0
C
- g𝑋" → √𝑐 if 𝑐 > 0
€6,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
LeonVerweij Cals College Nieuwegein (Nieuwegein)
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
33
Lid sinds
7 jaar
Aantal volgers
19
Documenten
28
Laatst verkocht
5 maanden geleden

2,0

1 beoordelingen

5
0
4
0
3
0
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen