H10. Celrespiration
Inhoudsopgave
E flow & recycleren v E ................................................................................................................................... 2
Dehydrogenase (H wegnemen & naar NAD+ brengen).................................................................................... 2
Elektronentransportketen .............................................................................................................................. 2
Celademhaling geheel .................................................................................................................................... 3
Substraatlevel fosforylatie ............................................................................................................................. 3
Fases glycolyse ............................................................................................................................................... 3
,Figure 10.2
E flow & recycleren v E
Light
energy
ECOSYSTEM
Photosynthesis
in chloroplasts Organic
CO2 + H2O + O2
molecules
Cellular respiration
in mitochondria
Figure 10.UN04
ATP powers
ATP
most cellular work
Heat
energy
Dehydrogenase (H wegnemen & naar NAD+ brengen)
© 2018 Pearson Education Ltd.
Dehydrogenase
Als elektronenacceptor functioneert NAD+ als oxidatiemiddel tijdens cellulaire ademhaling
Elke NADH (de gereduceerde vorm van NAD+) vertegenwoordigt opgeslagen energie die
wordt aangeboord om ATP te synthetiseren
Elektronentransportketen
Figure 10.5
© 2018 Pearson Education Ltd.
H2 + ½ O2 2H + ½ O2
Controlled
release of
2 H+ + 2 e– energy
Elec chain
Free energy, G
Free energy, G
ATP
tron
Explosive ATP
release of
tran
energy ATP
spo
2 e–
rt
½ O2
2 H+
H2O H2O
(a) Uncontrolled reaction (b) Cellular respiration
Belangrijk dat e- van een brandstof geleidelijk aan weggenomen worden (oxideren)
© 2018 Pearson Education Ltd.
Er worden telkens 2 e- weggenomrn Meestal door NADH
Tijdens naar beneden gaan wordt er ATP gemaakt
, Figure 10.6_3
Celademhaling geheel
Electrons Electrons
via NADH via NADH
and FADH2
GLYCOLYSIS PYRUVATE OXIDATIVE
OXIDATION CITRIC PHOSPHORYLATION
ACID
Glucose Pyruvate Acetyl CoA CYCLE (Electron transport
and chemiosmosis)
CYTOSOL MITOCHONDRION
Figure 10.7
ATP ATP ATP
Substrate-level Substrate-level Oxidative
Substraatlevel fosforylatie
© 2018 Pearson Education Ltd.
Enzyme Enzyme
ADP
P
ATP
Substrate
Product
= substraat level fosforylatie (in glycolyse & citroenzurcyclus) (beetje ATP)
Figure 10.8
Fases glycolyse
Energy Investment Phase
Glucose
© 2018 Pearson Education Ltd.
2 ATP used 2 ADP + 2 P
Energy Payoff Phase
4 ADP + 4 P 4 ATP formed
2 NAD+ + 4 e– + 4 H+ 2 NADH + 2 H+
2 Pyruvate + 2 H2O
Net
Glucose 2 Pyruvate + 2 H2O
4 ATP formed – 2 ATP used 2 ATP
2 NAD+ + 4 e– +4 H+ 2 NADH + 2 H+
© 2018 Pearson Education Ltd.
, GLYCOLYSIS: Energy Investment Phase
Glyceraldehyde
3-phosphate (G3P)
ATP Glucose Fructose Fructose
ATP
Glucose 6-phosphate 6-phosphate 1,6-bisphosphate
ADP ADP
Isomerase
5
Hexokinase Phosphogluco- Phospho- Aldolase Dihydroxyacetone
isomerase fructokinase
1 4 phosphate (DHAP)
2 3
Figure 10.9b
1. Fosforyleren
2. Herschikking: glucose è fructose
3. Fosforyleren
4. In 2 breken: G3P kan verder reageren
DHAP niet è via isomerase omgezet naar G3P
GLYCOLYSIS: Energy Payoff Phase
© 2018 Pearson Education Ltd.
2 ATP 2 ATP
2 NADH 2 H2O
2 ADP
2 NAD+ + 2 H+ 2 ADP 2 2 2 2
2
Triose Phospho- Phospho- Enolase Pyruvate
phosphate 2 P glycerokinase glyceromutase kinase
Glycer- dehydrogenase
i
9
aldehyde 1,3-Bisphospho- 7 3-Phospho- 8 2-Phospho- Phosphoenol- 10 Pyruvate
6
3-phosphate glycerate glycerate glycerate pyruvate (PEP)
(G3P)
1. 2 NAD+ toevoegen (stelen 2H+ è 2 NADH) (2P komt er random bij)
2. 2 ADP toevoegen è 2 ATP
3. Herschikking (P gaat v C3 naar C2)
Figure 10.104. Water komt vrij è PEP
5. 2 ADP toevoegen è 2 ATP
MITOCHONDRION
CYTOSOL
Coenzyme A
CO2
© 2018 Pearson Education Ltd.
1 3
2
NAD+ NADH + H+ Acetyl CoA
Pyruvate
Transport protein
1. CO2 komt vrij (ook een proton + 2 e-)
2. NAD+ è NADH + H+
© 2018 Pearson Education Ltd.
3. Coenzym A toevoegen
Inhoudsopgave
E flow & recycleren v E ................................................................................................................................... 2
Dehydrogenase (H wegnemen & naar NAD+ brengen).................................................................................... 2
Elektronentransportketen .............................................................................................................................. 2
Celademhaling geheel .................................................................................................................................... 3
Substraatlevel fosforylatie ............................................................................................................................. 3
Fases glycolyse ............................................................................................................................................... 3
,Figure 10.2
E flow & recycleren v E
Light
energy
ECOSYSTEM
Photosynthesis
in chloroplasts Organic
CO2 + H2O + O2
molecules
Cellular respiration
in mitochondria
Figure 10.UN04
ATP powers
ATP
most cellular work
Heat
energy
Dehydrogenase (H wegnemen & naar NAD+ brengen)
© 2018 Pearson Education Ltd.
Dehydrogenase
Als elektronenacceptor functioneert NAD+ als oxidatiemiddel tijdens cellulaire ademhaling
Elke NADH (de gereduceerde vorm van NAD+) vertegenwoordigt opgeslagen energie die
wordt aangeboord om ATP te synthetiseren
Elektronentransportketen
Figure 10.5
© 2018 Pearson Education Ltd.
H2 + ½ O2 2H + ½ O2
Controlled
release of
2 H+ + 2 e– energy
Elec chain
Free energy, G
Free energy, G
ATP
tron
Explosive ATP
release of
tran
energy ATP
spo
2 e–
rt
½ O2
2 H+
H2O H2O
(a) Uncontrolled reaction (b) Cellular respiration
Belangrijk dat e- van een brandstof geleidelijk aan weggenomen worden (oxideren)
© 2018 Pearson Education Ltd.
Er worden telkens 2 e- weggenomrn Meestal door NADH
Tijdens naar beneden gaan wordt er ATP gemaakt
, Figure 10.6_3
Celademhaling geheel
Electrons Electrons
via NADH via NADH
and FADH2
GLYCOLYSIS PYRUVATE OXIDATIVE
OXIDATION CITRIC PHOSPHORYLATION
ACID
Glucose Pyruvate Acetyl CoA CYCLE (Electron transport
and chemiosmosis)
CYTOSOL MITOCHONDRION
Figure 10.7
ATP ATP ATP
Substrate-level Substrate-level Oxidative
Substraatlevel fosforylatie
© 2018 Pearson Education Ltd.
Enzyme Enzyme
ADP
P
ATP
Substrate
Product
= substraat level fosforylatie (in glycolyse & citroenzurcyclus) (beetje ATP)
Figure 10.8
Fases glycolyse
Energy Investment Phase
Glucose
© 2018 Pearson Education Ltd.
2 ATP used 2 ADP + 2 P
Energy Payoff Phase
4 ADP + 4 P 4 ATP formed
2 NAD+ + 4 e– + 4 H+ 2 NADH + 2 H+
2 Pyruvate + 2 H2O
Net
Glucose 2 Pyruvate + 2 H2O
4 ATP formed – 2 ATP used 2 ATP
2 NAD+ + 4 e– +4 H+ 2 NADH + 2 H+
© 2018 Pearson Education Ltd.
, GLYCOLYSIS: Energy Investment Phase
Glyceraldehyde
3-phosphate (G3P)
ATP Glucose Fructose Fructose
ATP
Glucose 6-phosphate 6-phosphate 1,6-bisphosphate
ADP ADP
Isomerase
5
Hexokinase Phosphogluco- Phospho- Aldolase Dihydroxyacetone
isomerase fructokinase
1 4 phosphate (DHAP)
2 3
Figure 10.9b
1. Fosforyleren
2. Herschikking: glucose è fructose
3. Fosforyleren
4. In 2 breken: G3P kan verder reageren
DHAP niet è via isomerase omgezet naar G3P
GLYCOLYSIS: Energy Payoff Phase
© 2018 Pearson Education Ltd.
2 ATP 2 ATP
2 NADH 2 H2O
2 ADP
2 NAD+ + 2 H+ 2 ADP 2 2 2 2
2
Triose Phospho- Phospho- Enolase Pyruvate
phosphate 2 P glycerokinase glyceromutase kinase
Glycer- dehydrogenase
i
9
aldehyde 1,3-Bisphospho- 7 3-Phospho- 8 2-Phospho- Phosphoenol- 10 Pyruvate
6
3-phosphate glycerate glycerate glycerate pyruvate (PEP)
(G3P)
1. 2 NAD+ toevoegen (stelen 2H+ è 2 NADH) (2P komt er random bij)
2. 2 ADP toevoegen è 2 ATP
3. Herschikking (P gaat v C3 naar C2)
Figure 10.104. Water komt vrij è PEP
5. 2 ADP toevoegen è 2 ATP
MITOCHONDRION
CYTOSOL
Coenzyme A
CO2
© 2018 Pearson Education Ltd.
1 3
2
NAD+ NADH + H+ Acetyl CoA
Pyruvate
Transport protein
1. CO2 komt vrij (ook een proton + 2 e-)
2. NAD+ è NADH + H+
© 2018 Pearson Education Ltd.
3. Coenzym A toevoegen