100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Overzicht bewijzen (en eigenschappen) wiskunde met bedrijfseconomische toepassingen 1

Beoordeling
4,0
(1)
Verkocht
1
Pagina's
28
Geüpload op
30-07-2022
Geschreven in
2021/2022

Dit is een volledig overzicht van alle bewijzen en eigenschappen die te kennen zijn voor de examens (1e en 2e semester) van het vak Wiskunde met bedrijfseconomische toepassingen, gegeven in 1e bachelor TEW door professor Ann De Schepper

Meer zien Lees minder










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
30 juli 2022
Aantal pagina's
28
Geschreven in
2021/2022
Type
Samenvatting

Voorbeeld van de inhoud

Overzicht bewijzen en eigenschappen Wiskunde 1

WISKUNDE MET (BEDRIJFS)ECONOMISCHE TOEPASSINGEN 2021-
2022 BEWIJZEN semester 1
O 5.3.1 GEMIDDELDE WAARDE VERSUS MARGINALE WAARDE (P. 131)
o Als we de afgeleide van de gemiddelde functie berekenen, dan vinden we

o
d
dx
(⟨ f ⟩ ( x ) ) = d ( )
f (x ) x ∙ f ' ( x )−f ( x )
dx x
=
x
2



Omdat de noemer enkel een kwadraat bevat, wordt het teken van de breuk bepaald door de teller.
Er geldt:

d
 Als de gemiddelde functie stijgt, dan is (⟨ f ⟩ ( x ) ) ≥ 0
dx

' ' f (x)
Hieruit volgt dat x ∙ f ( x ) of f ( x ) ≥
x
d
 Als de gemiddelde functie daalt, dan is (⟨ f ⟩ ( x ) ) ≤ 0
dx

' f (x)
Hieruit volgt dat x ∙ f ' ( x ) ≤ f ( x ) of f ( x ) ≤
x
d
 Als de gemiddelde functie een lokaal extremum bereikt, dan is ( ⟨ f ⟩ ( x ) ) =0
dx

' f (x)
Hieruit volgt dat x ∙ f ' ( x )=f ( x ) of f ( x )=
x
O 8.2.3. AFLEIDEN VAN IMPLICIETE FUNCTIES (P. 169)
o Wanneer de vergelijking van een functie met één onafhankelijke veranderlijke gegeven is in een
impliciete vorm F ( x , y )=0, dan kan de afgeleide voor de (onbekende) expliciete vorm y=f ( x ) in
'
' −F x ( x 0 , y 0 )
een punt x 0 gevonden worden als f ( x 0 )= met y 0 bepaald door F ( x 0 , y 0 )=0 ,
F'y ( x 0 , y 0 )
o voor zover de functie f gedefinieerd is en de partiële afgeleide in de noemer verschilt van nul.
o Je kan dit terugvinden door te vertrekken vanuit de totale differentiaal (hier in de verkorte notatie):
o F ( x , y )=0
o ⇓
o dF ( x , y )=0
o ⇓
' '
o F x dx+ F y dy=0
o ⇓
' '
o F y dy =−F x dx
o ⇓

, '
dy −F x
o = '
dx Fy
O
O
O
O 8.2.3. AFLEIDEN VIA IMPLICIETE FUNCTIES (P. 170)
O Eigenschap 8.6 (Impliciete functie  F ( x , y , z )=0 )
O Wanneer de vergelijking van een functie met twee onafhankelijke veranderlijken gegeven is in
O een impliciete vorm F ( x , y , z )=0 , dan kunnen de partiële afgeleiden voor de (onbekende)
O expliciete vorm z=f ( x , y ) in een punt ( x 0 , y 0 ) gevonden worden als
'
O
' −F x ( x 0 , y 0 , z 0 )
O
f ( x0, y0)=
x
F 'z ( x0 , y 0 , z 0 )
O '
' −F y ( x 0 , y 0 , z 0 )
O f ( x 0 , y 0 )=
y '
F z ( x0 , y0 , z0 )
O
met z 0 bepaald door F ( x 0 , y 0 , z 0 )=0,
O

Ook dit resultaat kan je terugvinden vanuit de totale differentiaal (hier opnieuw in verkorte notatie),
nu voor de drie veranderlijken:

F ( x , y , z )=0

O dF ( x , y , z )=0
O

O
' ' '
O F x dx+ F y dy + F z dz=0
O ⇓
O
F 'z dz=−F 'x dx−F 'y dy
O

O
O −F 'x F 'y
dz= dx− dy
O F 'z F'z
O

O
' '
∂ z −F x ∂ z −F y
O = ' en = '
∂x Fz ∂y Fz
O
O
O GEVOLG 8.1. (RAAKLIJN) (P. 171)
o De vergelijking van de raaklijn in het punt P=( x0 , y 0 ) aan de curve met impliciete vergelijking
F ( x , y )=0 luidt F 'x ( x0 , y 0 ) ( x−x 0 ) + F'y ( x 0 , y 0 )( y− y 0 ) =0

, o Voor zover alle partiële afgeleiden bestaan.
o Om dit aan te duiden vertrekken we van de vergelijking voor de raaklijn zoals we ze eerder vonden:
y− y 0=f ' ( x 0 ) ( x−x 0 ), met f de (onbekende) expliciete functie die bij de curve hoort.
o We weten nu dat
'
' −F x ( x 0 , y 0 )
o f ( x 0 )= '
F y ( x0 , y0 )
o
o
o Invullen in de vergelijking van de raaklijn geeft
'
−F x ( x 0 , y 0 )
o y− y 0= ' ( x−x 0 )
F y ( x0 , y0)
o De noemer wegwerken geeft
o F 'y ( x 0 , y 0 )( y− y 0 ) =−F'x ( x 0 , y 0 ) ( x−x 0 );
brengen we alles aan één kant van het gelijkheidsteken, dan vinden we inderdaad het vermelde
resultaat.

O GEVOLG 8.2. (RAAKVLAK) (P. 172)
O De vergelijking van het raakvlak in het punt P=( x0 , y 0 , z 0 ) aan het oppervlak met impliciete
vergelijking F ( x , y , z )=0 luidt
O F 'x ( x0 , y 0 , z 0 )( x−x 0 ) + F 'y ( x0 , y 0 , z 0 ) ( y− y 0 ) + F'z ( x 0 , y 0 , z 0 ) ( z−z 0 ) =0
o Voor zover alle partiële afgeleiden bestaan.
o
Om dit aan te tonen vertrekken we van de vergelijking voor het raakvlak zoals we ze eerder zagen:
z−z 0=f 'x ( x 0 , y 0 )( x −x0 ) + f 'y ( x 0 , y 0 ) ( y − y 0 )
met f de (onbekende) expliciete functie die bij het oppervlak hoort.
We weten nu dat
'
' −F x ( x 0 , y 0 , z 0 )
f ( x0, y0)=
x '
F z ( x0 , y 0 , z 0 )
o en dat
−F 'y ( x 0 , y 0 , z 0 )
f 'y ( x 0 , y 0 )= '
F z ( x 0 , y0 , z0 )
o Invullen in de vergelijking van het raakvlak geeft
' '
−F x ( x 0 , y 0 , z 0 ) F y ( x0 , y0 , z0 )
o z−z 0= ' ( x−x 0 )− ' ( y− y 0 )
F z ( x0 , y0 , z0 ) F z ( x0 , y 0 , z 0 )
De noemer wegwerken geeft
' ' '
F z ( x 0 , y 0 , z 0 )( z −z 0 )=−F x ( x 0 , y 0 , z 0 )( x −x0 ) −F y ( x 0 , y 0 , z 0 ) ( y− y 0 ) ;
brengen we alles aan één kant van het gelijkheidsteken, dan vinden we inderdaad het vermelde
resultaat.
O
O 8.3.1. SAMENGESTELDE FUNCTIES (P. 174)

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
2 jaar geleden

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
louiseevens Universiteit Antwerpen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
148
Lid sinds
3 jaar
Aantal volgers
103
Documenten
20
Laatst verkocht
2 weken geleden

3,9

10 beoordelingen

5
2
4
5
3
3
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen