100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Logic and Modelling (X_401015)

Beoordeling
-
Verkocht
1
Pagina's
28
Geüpload op
12-07-2022
Geschreven in
2020/2021

Samenvatting van het vak Logic & Modelling als gegeven aan de Vrije Universiteit Amsterdam

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
12 juli 2022
Aantal pagina's
28
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Lecture 1



The
goal is to abstract away the patterns of reasoning from

the natural
language .
We want to
say exactly how and when

conclusions from
we can reach certain certain
hypotheses .




Informal arguments can be written in a formal symbolic way .




In the propositional logic
language of ,
sentences or formulas

that write down to
you are
going represent statements or


associations or
propositions .




the
goal symbolic logic is to identify the core elements
of

of reasoning and argumentation and explain how they work .




notations
Symbols of
key logical are :



if A then B "
"
A B implication
"
A and
conjunction
"
A B B

disjunction
"

A B A or B
"




A negation
" "
not A
" "

× A for every ×, A universal
A "
for some existential
"

+ × ,
A

Natural deduction is used to proof systems .
A deductive

system is sound if it
only allows us to derive valid

assertions and entailment . It is complete .
If the
system
is strong enough to allow us to verify all valid assertions
and entailment's .




rules of inference

implication
A B A
E implication elimination
B if we know A B and A ,
then we can conclude B .




I


A.
thetemporary assumption that A holds is
by making it explicit in the conclusion
" "
: cancelled .




B
1 I implication introduction rule

A B assume A 4) try to conclude B

, Conjunction hypotheses are on
A B I and introduction rule top and conclusions at
A B the bottom

A B and elimination left
EL
A

A B
Er and elimination right
B

An introduction rule shows how to establish a claim involving
the connective ,
while an elimination rule shows how to use

such a statement that contains the connective to derive others .




natural deduction =
a
proof is a tree of applications of

the rules of inference . The root is at the bottom .




In natural deduction is proof from
,
every proof a
hypotheses .




In other words ,
in any proof ,
there is a finite set of

EB C. conclusion A what the
hypotheses ,
. . . 3 and a ,
and

proof shows is that A follows from B. C. . . .




the assumption rule A can be used at
any time
"
A have proved A
"

assuming ,
we


(1)

A A B A
prove C from E

A B B B C B
hypotheses and C E

1. A C
I (1)
A C


prove CCA CB C) ) ( CA B) C) from no hypotheses
I. A CB C)

2 . A B

(2)
A B
(1) EL (2)
A CB C) A A B
Er
B C B
E
C
I (2)
(A B) C
I (1)
( CA CB C) ) ( CA B) C)

, Lecture 2

rules of inference

negation and falsity
1



It means that it is impossible .




:
negation introduction

, I
if we assume A and we establish impossibility
A then have
we not A


A A
E negation elimination

or contradiction introduction I




E contradiction elimination
A if I can prove falsity ,
then I can prove anything
=
last resort


disjunction

A introduction
T
- L disjunction left
AVB

B
In disjunction introduction right
AVB in order to known A B it suffices to
,




/ , prove one side CA or B) .




A B
: :

two hypothetical branches
.




A B C C
, E disjunction elimination
C

derive the formula from no hypotheses :




(A B) L7A B) cancelled
hypotheses can be

I. (A B) (2) (3)
2. A a)
A- It 4)
B
In
LA B) A B (A B) A B
3. B -
I I (3)

I (2) I
7A B
I
7A B
-

I (1)

(A B) L7A B)

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
lauraduits1 Vrije Universiteit Amsterdam
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
27
Lid sinds
3 jaar
Aantal volgers
18
Documenten
8
Laatst verkocht
2 maanden geleden

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen