100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Lecture notes Probability Theory II (STA211)

Beoordeling
-
Verkocht
-
Pagina's
15
Geüpload op
04-07-2022
Geschreven in
2021/2022

This course is designed primarily for students in mathematics, pure and applied sciences. However, it also meets the need of students in other fields. The course’s focus is to educate the student on the basic principles and applications of probability; several probability concepts and techniques; and how to employ them in making generalisations and decisions on social, health and related issues. Topics to be covered include: Probability - Discrete sample spaces, definitions and rules of probability, combinatorial analysis, conditional probability, independence, and Bayes’ theorem; Mean and variance of some discrete probability distribution – Bernoulli distribution; Binomial distributions, Poisson distributions; Discrete uniform distribution, geometric distribution; hyper-geometric distribution; Application of some discrete probability distribution - Binomial distribution, Poisson distribution, negative binomial distribution, geometric distribution, hyper-geometric distribution, multi-normal distribution; Mean and variance of some continuous probability distribution – uniform or rectangular distribution, exponential distribution; Sampling with and without replacement.

Meer zien Lees minder
Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
4 juli 2022
Aantal pagina's
15
Geschreven in
2021/2022
Type
College aantekeningen
Docent(en)
Daniel deborah
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

SOUTHWESTERN UNIVERSITY, NIGERIA
STA 211 – PROBABILITY II
Lecture Note by DANIEL Deborah O.

COURSE OUTLINE

Probability - Discrete Sample Spaces, Definitions and Rules of Probability, Combinatorial
Analysis, Conditional Probability, Independence, and Bayes’ Theorem;

Mean and Variance of Some Discrete Probability Distribution – Bernoulli Distribution; Binomial
Distributions, Poisson Distributions; Discrete Uniform Distribution, Geometric Distribution;
Hyper-Geometric Distribution;

Application Of Some Discrete Probability Distribution - Binomial Distribution, Poisson
Distribution, Negative Binomial Distribution, Geometric Distribution, Hyper-Geometric
Distribution, Multinomial Distribution;

Mean and Variance of Some Continuous Probability Distribution – Uniform or Rectangular
Distribution, Exponential Distribution;

, PROBABILITY

Definition of basic concepts
Sample Space: it is the collection of all possible outcomes of an experiment. For example, in
a single throw of a fair die, the sample space is S ={1,2,3,4,5,6}
Event: An event is a collection of outcomes. For instance in the experiment involving a single
throw of a die, the event that an even number turns up is E ={2,4,6}
Probability: Probability is a quantitative measure of the chances or likelihood or expectation
of the occurrence of an event. The values are between 0 and 1. An event that is certain to
occur has probability 1while the event that is certain not to occur has probability 0
Null Event: This is an event that does not contain any outcome, i.e. the outcome is an empty
set, e. g., in two throws of a die, the event that the sum of the numbers that turn up will be 15
is a null event. The probability of a null event is zero.
Independent Events: Two events, A and B are independent when the occurrence or non-
occurrence of one does not affect the occurrence or non-occurrence of the other. For example,
in two throws of a die, the outcome of the first throw does not affect the outcome of the second
throw. The joint probability of the two independent events is the product of their individual
probabilities, i.e.
Mutually Exclusive Events: Two events A and B are mutually exclusive when the occurrence
of one prevents the occurrence of the other, in other words, the two events don’t have any
outcomes in common, and their intersection is a null or an empty set. For instance, in a single
toss of a coin, the event that
“head” turns up, say A, A ={H}and the event that “tail” turns up, say B, B  {T } , 𝐴 and 𝐵
are mutually exclusive events.
Classical Definition of Probability
Let S be the sample space containing all the n S( ) possible equally likely outcomes of an
experiment and let E be an event consisting of a set of n E( ) such outcomes; then the
probability of event E is defined as
n( E )
P( E ) 
n( S )
Laws of Probability
There are two major laws of probability; the multiplication law and the addition law
€8,74
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
DaprimeEduConsult

Maak kennis met de verkoper

Seller avatar
DaprimeEduConsult Southwestern University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
3 jaar
Aantal volgers
0
Documenten
10
Laatst verkocht
-
Daprime Edu Consult

Daprime Edu Consult seeks to help students improve their mathematical concepts about real life situations, understand basic mathematical concepts, topic and ensure they passed their exams successfully

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen