100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Exam (elaborations) TEST BANK FOR Introductory Quantum Optics 1st Edit

Beoordeling
-
Verkocht
-
Pagina's
161
Cijfer
A+
Geüpload op
11-02-2022
Geschreven in
2021/2022

Exam (elaborations) TEST BANK FOR Introductory Quantum Optics 1st Edit Eq. (2.5) has the form Ex(z, t) = s 2ω2 V ε0 q(t) sin(kz), (2.1.1) and Eq. (2.2) ∇ × B = µ0ε0 ∂E ∂t . (2.1.2) Both equations lead to −∂zBy = µ0ε0 s 2ω2 V ε0 q˙(t) sin(kz), (2.1.3) which itself leads to Eq. (2.6) By(z, t) = µ0ε0 k s 2ω2 V ε0 q˙(t) cos(kz). (2.1.4) 2.2 problem 2.2 H = 1 2 Z dV · ε0E 2 x (z, t) + 1 µ0 B 2 y (z, t) ¸ . (2.2.1) 9 10 CHAPTER 2. FIELD QUANTIZATION From the previous problem Ex(z, t) = s 2ω2 V ε0 q(t) sin(kz), (2.2.2) so ε0E 2 x (z, t) = 2ω 2 V q 2 (t) sin2 (kz). (2.2.3) Also By(z, t) = µ0ε0 k s 2ω2 V ε0 q˙(t) cos(kz), (2.2.4) and 1 µ0 B 2 y (z, t) = 2 V p 2 (t) cos2 (kz), (2.2.5) where we have used that c 2 = (µ0ε0) −1 , p(t) = ˙q(t), and ck = ω. Eq. 2.2.1 becomes then H = 1 V Z dV £ ω 2 q 2 (t) sin2 (kz) + p 2 (t) cos2 (kz) ¤ . (2.2.6) Using these simple trigonometric identities cos2 x = 1+cos 2x 2 and sin2 x = 1−cos 2x 2 , we can simplify equation 2.2.6 further to: H = 1 2V Z dV £ ω 2 q 2 (t)(1 + cos 2kz) + p 2 (t)(1 − cos 2kz) ¤ . (2.2.7) Because of the periodic boundaries both cosine terms drop out, also 1 V R dV = 1 and we end up by H = 1 2 ¡ p 2 + w 2 q 2 ¢ . (2.2.8) It is easy to see that this Hamiltonian has the form of a simple harmonic oscillator. 2.3 problem 2.3 Let f be a function defined as: f(λ) = e iλAˆ Beˆ −iλAˆ . (2.3.1) 2.4. PROBLEM 2.4 11 If we expand f as f(λ) = c0 + c1(iλ) + c2 (iλ) 2 2! + ..., (2.3.2) where c0 = f(0) c1 = f 0 (0) c2 = f 00(0)· · · Also c0 = f(0) = Bˆ c1 = f 0 (0) = h Aeˆ iλAˆ Beˆ −iλAˆ − e iλAˆ BˆAeˆ −iλAˆ i¯ ¯ ¯ λ=0 = h A, ˆ Bˆ i c2 = h B, ˆ h A, ˆ Bˆ ii . The same way we can determine the other coefficients. 2.4 problem 2.4 Let f(x) = e Axˆ e Bxˆ (2.4.1) df(x) dx = Aeˆ Axˆ e Bxˆ + e Axˆ Beˆ Bxˆ = ³ Aˆ + e Axˆ Beˆ −Axˆ ´ f(x) It is easy to prove that h B, ˆ Aˆn i = nAˆn−1 h B, ˆ Aˆ i (2.4.2) 12 CHAPTER 2. FIELD QUANTIZATION h B, e ˆ −Axˆ i = X  B, ˆ ³ −Axˆ ´n n!   = X(−1)n x n n! h B, ˆ Aˆn i = X(−1)n x n (n − 1)!Aˆn−1 h B, ˆ Aˆ i = −e −Axˆ h B, ˆ Aˆ i x So Beˆ −Axˆ − e −Axˆ Bˆ = −e −Axˆ h B, ˆ Aˆ i x e −Axˆ Beˆ Axˆ = Bˆ − e −Axˆ h B, ˆ Aˆ i x (2.4.3) e Axˆ Beˆ −Axˆ = Bˆ + e Axˆ h A, ˆ Bˆ i x (2.4.4) Equation 4.1.1 becomes df(x) dx = ³ Aˆ + Bˆ + h A, ˆ Bˆ i´ f(x). (2.4.5) Since h A, ˆ Bˆ i commutes with Aˆ and Bˆ, we can solve equation 2.4.5 as an ordinary equation. The solution is simply f(x) = exp h³Aˆ + Bˆ ´ x i exp µ 1 2 h A, ˆ Bˆ i x 2 ¶ (2.4.6) If we take x = 1 we will have e Aˆ+Bˆ = e Aˆ e Bˆ e − 1 2 [A, ˆ Bˆ] (2.4.7) 2.5 problem 2.5 |Ψ(0)i = 1 √ 2 ¡ |ni + e iϕ|n + 1i ¢ . (2.5.1) 2.5. PROBLEM 2.5 13 |Ψ(t)i = e −i Ht ˆ ~ |Ψ(0)i = 1 √ 2 ³ e −i Ht ˆ ~ |ni + e −i Ht ˆ ~ |n + 1i ´ = 1 √ 2 ¡ e −inωt|ni + e iϕe −i(n+1)ωt|n + 1i ¢ , where we have used E ~ = ω nˆ|Ψ(t)i = ˆa † aˆ|Ψ(t)i = 1 √ 2 ¡ e −inωtn|ni + e iϕe −i(n+1)ωt(n + 1)|n + 1i ¢ hnˆi = hΨ(t)|nˆ|Ψ(t)i = 1 2 (n + n + 1) = n + 1 2 the same way ­ nˆ 2 ® = hΨ(t)|nˆnˆ|Ψ(t)i = 1 2 ¡ n 2 + (n + 1)2 ¢ = n 2 + n + 1 2 ­ (∆ˆn) 2 ® = ­ nˆ 2 ® − hnˆi 2 = 1 4 Eˆ|Ψ(t)i = E0 sin(kz) ¡ aˆ † + ˆa ¢ |Ψ(t)i = 1 √ 2 E0 sin(kz) ¡ aˆ † + ˆa ¢ ¡e −inωt|ni + e iϕe −i(n+1)ωt|n + 1i ¢ = 1 √ 2 E0 sin(kz) h e −inωt ³√ n + 1|n + 1i + √ n|n − 1i ´ + e iϕe −i(n+1)ωt ³√ n + 2|n + 2i + √ n + 1|ni ´i 14 CHAPTER 2. FIELD QUANTIZATION hΨ(t)|Eˆ|Ψ(t)i = 1 2 E0 sin(kz) ³ e iωt√ n + 1 + e iϕe −iωt√ n + 1´ = √ n + 1E0 sin(kz) cos(ϕ − ωt) D Eˆ2 E = hΨ(t)|EˆEˆ|Ψ(t)i = 2(n + 1)E 2 0 sin2 (kz) ¿³ ∆Eˆ ´2 À = (n + 1)E 2 0 sin2 (kz) £ 2 − cos2 (ϕ − ωt) ¤ (ˆa † − aˆ)|Ψ(t)i = 1 √ 2 h e −inωt ³√ n + 1|n + 1i − √ n|n − 1i ´ + e iϕe −i(n+1)ωt ³√ n + 2|n + 2i − √ n + 1|ni ´i h(ˆa † − aˆ)i = −i √ n + 1 sin(ϕ − ωt) Finally we have the following quantities ∆n = 1 2 ∆E = E0|sin(kz)| p 2(n + 1) [2 − cos2 (ϕ − ωt)] ¯ ¯h(ˆa † − aˆ)i ¯ ¯ = √ n + 1|sin(ϕ − ωt)|. Certainly the inequality in (2.49) holds true since p 2 (2 − cos2 (ϕ − ωt)) > |sin(ϕ − ωt)|. 2.6 problem 2.6 Xˆ 1 = 1 2 ¡ aˆ + ˆa † ¢ Xˆ 2 = 1 2i ¡ aˆ − aˆ † ¢ Xˆ 2 1 = 1 4 ¡ aˆ †2 + ˆa 2 + 2ˆa † aˆ + 1¢ Xˆ 2 2 = − 1 4 ¡ aˆ †2 + ˆa 2 − 2ˆa † aˆ − 1 ¢ 2.6. PROBLEM 2.6 15 |Ψ01i = α|0i + β|1i where |α| 2 + |β| 2 = 1. So we can rewrite β = p 1 − |α| 2e iφ and α 2 = |α| 2 without any loss of generality. D Xˆ 1 E 01 = 1 2 (α ∗β + αβ∗ ) D Xˆ 2 E 01 = 1 2i (α ∗β − αβ∗ ) ­ aˆ †2 ® 01 = 0 ­ aˆ 2 ® 01 = 0 haˆ † aˆi01 = |β| 2 D Xˆ 2 1 E 01 = 1 4 ¡ 2|β| 2 + 1¢ D Xˆ 2 2 E 01 = 1 4 ¡ 2|β| 2 + 1¢ ¿³ ∆Xˆ 1 ´2 À 01 = 1 4 £ 2|β| 2 + 1 − (α ∗β) 2 − (αβ∗ ) 2 − 2|α| 2 |β| 2 ¤ = 1 4 £ 3 − 4|α| 2 + 2|α| 4 − 2|α| 2 (1 − |α| 2 ) cos(2φ) ¤ ¿³ ∆Xˆ 2 ´2 À 01 = 1 4 £ 2|β| 2 + 1 + (α ∗β) 2 + (αβ∗ ) 2 − 2|α| 2 |β| 2 ¤ = 1 4 £ 3 − 4|α| 2 + 2|α| 4 + 2|α| 2 (1 − |α| 2 ) cos(2φ) ¤ In figures a and b below we plot ¿³ ∆Xˆ 1 ´2 À 01 (solid line) for φ = π/2 and ¿³ ∆Xˆ 2 ´2 À 01 (doted line) for φ = 0, respectively. Clearly the quadratures in hands go below the quadrature variances of the vacuum in more than one occasion. 16 CHAPTER 2. FIELD QUANTIZATION 2 a 2 a f=p/2 f=0 (a) 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 ( )2 1,2 01 Xˆ y=0.25 y=0.25 ( )2 1,2 Xˆ (b) |Ψ02i = α|0i + β|2i. (2.6.1) Again, where |α| 2 + |β| 2 = 1. So we can rewrite β = p 1 − |α| 2e iφ and α 2 = |α| 2 without any loss of generality. D Xˆ 1 E 02 = 0 = D Xˆ 2 E ¿ 02 ³ ∆Xˆ 1 ´2 À 02 = D Xˆ 2 1 E 02 = 1 4 ³ |α + √ 2β| 2 + 3|β| 2 ´ = 1 4 h 5 − 4|α| 2 + 2p 2|α| 2 (1 − |α| 2 ) cos φ i ¿³ ∆Xˆ 2 ´2 À 02 = D Xˆ 2 2 E 02 = 1 4 ³ |α − √ 2β| 2 + 3|β| 2 ´ = 1 4 h 5 − 4|α| 2 − 2 p 2|α| 2 (1 − |α| 2 ) cos φ i In figures c and d below we plot ¿³ ∆Xˆ 1 ´2 À 02 for φ = 0 and ¿³ ∆Xˆ 2 ´2 À 02 2.7. PROBLEM 2.7 17 for φ = π/2, respectively. Clearly the quadratures in hands go below the quadrature variances of the vacuum in more than one occasion. ( )2 1 02 DXˆ ( )2 2 02 DXˆ 2 a 2 a (c) (d) 0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6 f=0 f=p/2 2.7 Problem 2.7 |Ψ 0 i = N aˆ |Ψi |N |2 = hnˆi = ¯n N = 1 √ n¯ |Ψ 0 i = 1 √ n¯ aˆ |Ψi 18 CHAPTER 2. FIELD QUANTIZATION n0 = hΨ 0 |nˆ|Ψ 0 i = 1 n¯ hΨ|aˆ † aˆ † aˆaˆ|Ψi = 1 n¯ ¡ hΨ|nˆ 2 |Ψi − hΨ|nˆ|Ψi ¢ = hΨ|nˆ 2 |Ψi n¯ − 1 = hnˆ 2 i hnˆi − 1. Notice that n0 6= n − 1 in general, but for the number state |ni, and only of this state we have n0 = n − 1. 2.8 Problem 2.8 |Ψi = 1 √ 2 (|0i + |10i) (2.8.1) The average photon number, ¯n, of this state is n¯ = hΨ|aˆ † aˆ|Ψi, (2.8.2) which can be easily calculated to be n¯ = 1 2 (0 + 10) =

Meer zien Lees minder
Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
11 februari 2022
Aantal pagina's
161
Geschreven in
2021/2022
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

2

, Adil Benmoussa



Solutions Manual


To


INTRODUCTORY QUANTUM OPTICS
By C. C. Gerry and P. L. Knight




May 15, 2005

,Table of Contents

Table of Contents 3

1 Introduction 7

2 Field Quantization 9
2.1 problem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 problem 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 problem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 problem 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 problem 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 problem 2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Problem 2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Problem 2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.9 Problem 2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.10 Problem 2.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.11 Problem 2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.12 Problem 2.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.13 Problem 2.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Coherent States 25
3.1 Problem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Problem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Problem 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Problem 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Problem 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 Problem 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.7 Problem 3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3

, 4 CONTENTS

3.8 Problem 3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.9 Problem 3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.10 Problem 3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.11 Problem 3.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.12 Problem 3.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.13 Problem 3.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.14 Problem 3.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Emission and Absorption of Radiation by Atoms 45
4.1 Problem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Problem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Problem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Problem 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Problem 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Problem 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.7 Problem 4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.8 Problem 4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.9 Problem 4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.10 Problem 4.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.11 Problem 4.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.12 Problem 4.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.13 Problem 4.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Quantum Coherence Functions 71
5.1 Problem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Problem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Problem 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 Problem 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.5 Problem 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Interferometry 79
6.1 Problem 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Problem 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3 Problem 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4 Problem 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.5 Problem 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
€10,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
COURSEHERO2

Maak kennis met de verkoper

Seller avatar
COURSEHERO2 Maastricht University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
4
Lid sinds
4 jaar
Aantal volgers
2
Documenten
82
Laatst verkocht
11 maanden geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen