100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Volledige samenvatting verkarende statistiek

Beoordeling
-
Verkocht
4
Pagina's
90
Geüpload op
14-01-2022
Geschreven in
2020/2021

Volledige samenvatting voor het vak verklarende statistiek gegeven door Peter Goos, van het boek, de hoorcolleges met notities en de werkcolleges.










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
14 januari 2022
Bestand laatst geupdate op
22 juni 2023
Aantal pagina's
90
Geschreven in
2020/2021
Type
Samenvatting

Voorbeeld van de inhoud

VERKLARENDE STATISTIEK
D1: Schatters en toetsen........................................................................................................................2
1. Het schatten van populaties...............................................................................................................2
2. Inleiding: schatters versus schatting...................................................................................................2
3. Intervalschatters...............................................................................................................................10
4. Punt- en intervalschatters.................................................................................................................10
5. Het toetsen van hypothesen............................................................................................................16
6. Toetsen van hypothesen omtrent een populatiegemiddelde...........................................................17
D2: één populatie.................................................................................................................................24
7. Hypothesetoetsen voor een populatiegemiddelde, -proportie en -variantie...................................24
8. Hypothesetoets voor een populatiegemiddelde..............................................................................24
9. Twee hypothesetoetsen voor de mediaan v/e populatie.................................................................34
10. Tekentoets......................................................................................................................................34
11. Hypothesetoetsen voor de verdeling v/e populatie.......................................................................40
12. Het toetsen van kansverdelingen...................................................................................................40
D3: Twee populaties.............................................................................................................................45
13. Onafhankelijke steekproeven versus gepaarde waarnemingen.....................................................45
14. Hypothesetoetsen voor twee populatiegemiddeldes, -proporties en -varianties bij onafhankelijke
steekproeven........................................................................................................................................46
15. Een niet-parametrische hypothesetoets voor de mediaan van 2 populaties bij onafhankelijke
steekproeven........................................................................................................................................58
16. Hypothesetoets voor 2 populatiegemiddeldes bij gepaarde waarnemingen.................................65
17. 2 niet-parametrische hypothesetoetsen bij gepaarde waarnemingen...........................................68
D5: Meer dan twee populaties.............................................................................................................72
18. Hypothesetoets voor meer dan 2 populatiegemiddeldes: Enkelvoudige variantieanalyse............72
19. Niet-parametrische alternatieve voor variantieanalyse.................................................................79
20. Hypothesetoetsen voor meer dan 2 populatievarianties...............................................................84
D5: Andere nuttige toetsen en procedures..........................................................................................89
21. Proefopzet en datacollectie............................................................................................................89




1

, D1: Schatters en toetsen
1. Het schatten van populaties
2. Inleiding: schatters versus schatting
Populatieparameters:
- Populatiegemiddelde µ
- Populatievariantie ² (altijd positief)
- Populatieproportie π (altijd tussen 0 en 1)
 Doel: uitspraken doen over onbekende populatieparameters door steekproefgegevens te
verzamelen.
 Populatieparameters schatten.

Schatting = een functie van steekproefgegevens gebaseerd op een aantal metingen of waarnemingen
(de steekproefgegevens) x 1 , x 2 , … , x n.
n
xi
 Steekproefgemiddelde: x=∑
i=1 n
n
1
 Steekproefvariantie: s =
2

n−1 i=1
( x i−x )
2



xi
{
xi =1 ,indien succes
n
 Steekproefproportie: ^p=∑ waarbij
i=1 n
xi =0 ,indien faling

Elke onderzoeker die hetzelfde onderzoek doet bekomt andere steekproefgegevens. Het trekken v/e
steekproef en het verzamelen van steekproefgegevens is immers een kansexperiment.
 Hoofdletters gebruiken voor steekproefwaarnemingen X 1 , X 2 , … , X n.
 Het steekproefgemiddelde X wordt dan geïnterpreteerd als een kansvariabele en men
spreekt over een schatter.
 Het zijn kansvariabelen met een verwachte waarde, een variantie en een kansverdeling of -
dichtheid.

Een schatting is dus altijd een reëel getal, terwijl een schatter een kansvariabele is waarvan de
waarde nog niet bekend is (de wijze waarop we de parameter gaan schatten).

De kwaliteit v/d schatting wordt bepaald door de hoeveelheid data die wordt gebruikt. De
onderzoeker wilt een schatting verkrijgen die gemiddeld gelijk is aan de onbekende parameter en
dicht bij de onbekende parameter ligt  de schatter moet zuiver of onvertekend zijn.

2.2 Het schatten v/e gemiddelde
2.2.1 GEMIDDELDE V/E NORMAAL VERDEELDE POPULATIE:
Mogelijkheden om een onbekende µ te schatten:
- Het steekproefgemiddelde berekenen.
- De mediaan berekenen  voor een normaal verdeelde populatie is zowel de mediaan als de
verwachte waarde gelijk aan de parameter µ.
 Beide mogelijkheden resulteren in intervallen.
 Indien het aantal steekproeven gevoelig opgedreven zou worden (tot oneindig), dan zouden de
gemiddeldes v/d steekproefgemiddeldes en steekproefmedianen gelijk worden aan de
“onbekende” µ.



2

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
hannedierckx Universiteit Antwerpen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
37
Lid sinds
5 jaar
Aantal volgers
26
Documenten
16
Laatst verkocht
1 maand geleden

4,0

3 beoordelingen

5
0
4
3
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen