100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting 2e semester wiskunde hi(b)

Beoordeling
-
Verkocht
1
Pagina's
14
Geüpload op
14-01-2022
Geschreven in
2020/2021

Volledige samenvatting voor het vak Wiskunde met bedrijfseconomische toepassingen (theorie). Het boek en notities van in de les staan erin. Naar bewijzen is enkel gerefereerd maar deze staan altijd letterlijk in de cursus.










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
14 januari 2022
Aantal pagina's
14
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Wiskunde semester 2

, 1.1 Bepaalde en onbepaalde integralen
2.1Partities, boven- en ondersommen

Herhaling: definities toegepast op een deelverzameling V van R , en de orderelatie “≤ ”
- Een element v ∈V is een maximaal element van V als, x ≤ v voor alle x ∈ V .
Een element v ∈V is een minimaal element van V als, v ≤ x voor alle x ∈ V .
- Een element a ∈ R is een bovengrens van V als, x ≤ a voor alle x ∈ V .
Een element a ∈ R is een ondergrens van V als, a ≤ x voor alle x ∈ V .
Beschouw nu de deelverzameling C van R die bestaat uit alle bovengrenzen van V.
- We noemen s ∈ R het supremum van V indien s het minimale element is van C.
Analoog, beschouw de deelverzameling D van R die bestaat uit alle ondergrenzen van V.
- We noemen i∈ R het infimum van V indien i het maximale element is van D.

Stelling: Als een deelverzameling V van R naar boven begrensd is, dan heeft V een supremum. Als V
naar beneden begrens is, dan heeft V een infimum.

Definitie: Een partitie P v/e gesloten interval [ a , b ] is een verzameling getallen { x 0 , x 1 , … , x n } met
x 0=a< x1 < …< x n=b .

De unie v/d deelintervallen ¿ en [ x n−1 , x n ] vormt dan het volledige interval [ a , b ].

Beschouw een functie f die begrensd is op [ a , b ]. Stel dat er een partitie P gegeven is op [ a , b ] en
beschouw in elk deelinterval het infimum en het supremum v/d functiewaarden,
¿
m k =inf ⁡¿, Mk= ¿
Er geldt dan m k ≤ M k .

We beschouwen een functie met f ( x ) >0 op [ a , b ].
 Beschouw rechthoeken vertrekkende uit de X-as met hoogte m k en breedte ∆ x k =x k −x k−1.
 De som v/d oppervlaktes van al deze rechthoeken zal de “oppervlakte” onder de functie f op het
interval [ a , b ] benaderen.
 Aangezien de oppervlakte van één dergelijke rechthoek gelijk is aan m k ∆ x k , is die benadering
n
OP ,f =∑ mk ∆ x k  Deze som wordt de ondersom voor de Partitie P genoemd.
k=1
n
 Analoog is BP ,f =∑ M k ∆ x k de bovensom voor de partitie P.
k=1
 Het is duidelijk dat O P ,f ≤ oppervlakte f(x) ≤ B P , f .

Dit kan herhaald worden voor functies waarvan de beeldwaarde niet noodzakelijke strikt positief is.

2.2Bepaalde integralen

De definities hangen af v/d keuze v/d partitie.
Wanneer we aan P meer punten toevoegen krijgen we een nieuwe partitie P’. Er zal dan gelden:
OP ,f ≤ OP ' , f en BP ,f ≥ B P ' , f .
 Voor 2 willekeurige partities P1 en P2 van hetzelfde interval steeds:
OP ,f ≤ B P , f
1 2
en OP ,f ≤ B P , f .
2 1




De allereenvoudigste (of ruwste) partitie is die waarbij P2={a , b }.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
hannedierckx Universiteit Antwerpen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
37
Lid sinds
5 jaar
Aantal volgers
26
Documenten
16
Laatst verkocht
1 maand geleden

4,0

3 beoordelingen

5
0
4
3
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen